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Algorithmi
 approa
h to quantum physi
sY.I.Ozhigov∗Mos
ow State University,Institute of Physi
s and te
hnology RASMar
h 25, 2008Abstra
tAlgorithmi
 approa
h is based on the assumption that any quantum evolution of many parti
lesystem 
an be simulated on a 
lassi
al 
omputer with the polynomial time and memory 
ost. Al-gorithms play the 
entral role here but not the analysis, and the simulation gives the "�lm" whi
hvisualizes many parti
le quantum dynami
s and is demonstrated to a user of the model. Restri
tionsfollowing from the algorithm theory are 
onsidered on a level of fundamental physi
al laws. Born rulefor the 
al
ulation of quantum probability as well as the de
oheren
e is derived from the existen
e ofa nonzero minimal value of amplitude module - a grain of amplitude. The limitation on the 
lassi
al
omputational resour
es gives the uni�ed des
ription of quantum dynami
s that is not divided to theunitary dynami
s and measurements and does not depend on the existen
e of observer. It is proposedthe des
ription of states based on the nesting of parti
les in ea
h other that permits to a

ount thee�e
ts of all levels in the same model. Algorithmi
 approa
h admits the possibility of refutation,be
ause it forbids the 
reation of a s
alable quantum 
omputer that is allowed in the 
onventionalquantum formalism.1 Introdu
tionThe notion of 
lassi
al algorithm and 
omputational methods headily penetrate to all areas of naturals
ien
es. This penetration gives the new language for the des
ription of s
ien
e that is based rather onalgorithms than on formulas and prin
iples as the 
onventional approa
hes. This new approa
h brings theserious 
hange of the 
ontents of s
ien
es that is not yet fully realized due to the in
redible �exibility anduniversality of the algorithmi
 des
ription of Nature. But we already meet with the surprising featuresof this new des
ription that distinguish it from the 
onventional language and these features 
an be inprin
ipal established in experiments. It is 
onne
ted with the most advan
ed part of the natural s
ien
e- physi
s, or more pre
isely, quantum physi
s where this di�eren
e has been revealed very expli
itly; it isjust the subje
t of this arti
le1.The algorithmi
 approa
h to physi
s is based on the simple idea: a 
omputer must be 
onsidered asa paramount physi
al devi
e whi
h ne
essarily attends at any experiments. It was just so even whenthere were no 
omputers, their role was played by a physi
ist who ful�lled all the 
omputations athand. It follows from this assumption that all the limitations that result from algorithm theory must be
∗e-mail: ozhigov�
s.msu.su1Several resear
hers have 
ome to the idea of this approa
h independently; here I mention V.Akulin who expressedit in the talk with the author; some suggestions of the limitation on the area of appli
ability of quantum formalism arepermanently expressed by the other s
ientists, espe
ially by those who deal with the di�erent aspe
ts of the de
oheren
eproblem (see, for example, ([Fe℄,[Ak℄). 1
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onsidered equally to the physi
al laws. We 
all these limitations 
omputational. The main assumptionof algorithmi
 approa
h was not very pithy when the 
omputational limitations 
ould be ignored, e.g.,when the existen
e of a 
omputer 
ould be negle
ted or it 
ould be used as a simple 
al
ulating ma
hinefor 
al
ulations by �xed formulas2. The situation has been 
hanged when the traditional analyti
alformalism of physi
s 
ame into 
on�i
t with its new problems. It be
ame evident with the beginningof the elaboration of a hypotheti
 quantum 
omputer, whi
h was appealed to in order to resolve this
on�i
t. The 
on
ept of a quantum 
omputer pro
eeds from the assumption of the priority of analyti
alte
hnique over algorithms. E.g., here it is impli
itly assumed that the 
on
ept of a 
lassi
al algorithm isnot fundamental and 
an be easily repla
ed by the 
omputational pro
edure of the other type - quantum
omputation. This assumption is the attempt to extrapolate quantum physi
s to the area where it hasbeen never 
he
ked, hen
e a quantum 
omputer must be treated as a prin
ipal hypothesis to whi
h wewill return later.Now we try to understand what we 
an obtain with algorithmi
 approa
h, when we assume the 
on
eptof algorithm as the most fundamental. The key assumption of this approa
h is the theoreti
al possibilityto 
reate the 
omplete model of observed events by means of a 
lassi
al 
omputer whi
h uses e�e
tivealgorithms and is independent of an experimentalist. An e�e
tive algorithm is su
h a 
lassi
al algorithmthat requires the quantity of resour
es (time and memory) limited by some polynomial of the memorysize needed for the des
ription of the simulated system states3. Su
h a model must show in ea
h momentthe distribution of the probability to �nd any subsystem of the simulated system in any possible statefor whi
h this probability p is su�
iently large. For example we 
an assume that pTtot > 1, where Ttot -is the largest a

essible value of the time.The work of su
h an algorithm 
an be represented in the form of a "�lm" whi
h is demonstrated toa user, who 
annot interfere to this "�lm"; a user 
an only order su
h a "�lm" beforehand and point,for example, what measurements and when it is planned to do over the simulated system4. In otherwords we 
onsider the Nature as the "�lm" demonstrated to us through the simulating 
omputer thatis in
luded to the 
omputational network, and as users we have no rights to a

ess inside this network.Su
h a network 
an be 
onsidered as a model of the frame a

osiated with the given user. All theinformation this 
omputer deals with has thus the form of binary strings of the limited length. Thephysi
al magnitudes needed for the right demonstration of the "�lm" (for example, binding energy in amole
ule, the mean distan
e between atoms et
.) are 
omputed by the simulating 
omputer in 
ourse ofthe "�lm" preparation and are used in its demonstration. Su
h "�lms" are the most general form of thephysi
al phenomena des
ription 
orresponding to the algorithmi
 approa
h. The matter thus 
on
ernsthe repla
ement of the 
onventional mathemati
al apparatus of physi
s (analysis and algebra) to thedi�erent mathemati
al apparatus (algorithms) that is more general but by virtue of the histori
al reasonsis less known to physi
ists. We will not develop this topi
 here and 
on
entrate on the pra
ti
al side2Stri
tly speaking it is never possible to ignored the 
omputational limitations. For example, even exa
t mathemati
al
onsideration of one ele
tron movement in va
uum with the a

ount of relativisti
 e�e
ts (transformations of photons andele
tron-positron pairs) leads to the summing of divergent sums and several tri
ks, for whi
h the mathemati
al substantia-tion is based on the impli
it 
onfession of the priority of algorithms over the des
riptive te
hnique like parti
les and theirintera
tions. Just su
h a priority is used in the method of renormalization where the 
lassi
al viewpoint to the full 
onsid-eration of spa
e-time is sa
ri�
ed to the preserving of the 
onvenien
e of the algorithmi
 des
ription of dynami
s. Quantummethod won in atomi
 physi
s just be
ause it gave the e�e
tive algorithms leading to the right predi
tions as opposed to
lassi
al method. For example, Shroedinger equation gives the hydrogen atom spe
trum after easy 
omputations whereasthe 
lassi
al method without negle
ting ele
tromagnetism leads to the wrong predi
tion, and the 
lassi
al 
onsideration ofthe ele
tron movement in ele
tromagneti
 �eld based on Maxwell equations and relativisti
 formula for energy has not yetful�lled be
ause this problem statement gives no e�e
tive algorithms.3This 
lass of algorithms is independent from the formalization of algorithms.4Of 
ourse, if we allow to a user to interfere in su
h a "�lm" the problem would be
ome insoluble due to the quantumnon-lo
ality. But just our problem statement has the pra
ti
al signi�
an
e be
ause it 
an answer to the main question ofan experimentalist: what these or that a
tions over the given system result in. Here the delay that 
ompensates the la
k ofpro
essing speed 
annot in turn ex
eed the established limits. Pra
ti
ally, the time of simulation must grow not faster thanlinearly as the size of simulated system grows, be
ause otherwise we 
annot hope to 
reate even the �lm with minimumsubstan
e. 2



of this approa
h. We only note that the advantage of this des
ription is that the spe
ialists in di�erentareas 
an work with it independently; this possibility itself 
an be 
ru
ial for the future of this approa
h.The prin
ipal 
onsequen
e of algorithmi
 approa
h is the existen
e of the minimal and nonzero valueof amplitudes molude, the so 
alled amplitude quantum (or grain). The thesis about amplitude quantumgives su
h a 
lassi
al urn s
heme for quantum probability that implyies Born rule (see below). Moreover,the 
on
ept of amplitude quantum makes possible to give a uni�ed des
ription of quantum dynami
swhi
h is not divided to the unitary dynami
s and measurements and does not depend on the existen
e ofobserver. It makes the "�lm" representation of dynami
s as obje
tive as the 
onventional representationby formulas.Algorithmi
 approa
h whi
h we are going to 
onsider arises from the attempts to 
reate a 
omputermodel for the dynami
s of many parti
le systems with quantum behavior, for example, 
hemi
al rea
tions.It in
ludes the dynami
s of atoms and mole
ular stru
tures 
onne
ted with the 
hange of ele
troni
 statesindu
ing the 
reation of 
hemi
al bounds between atoms. It is well known that the behavior of an ele
tron
annot be des
ribed in terms of 
lassi
al dynami
s, say by the representation of it as a ball moving inthe Coulomb potential of the nu
leus. All the more it is impossible for a system of several ele
trons.The prin
ipal di�
ulty arises already for the states of many ele
trons in atoms and mole
ules. Thedimensionality of the spa
e of these states grows exponentially when the number of ele
tron in
reases.The exponential growth takes pla
e even if we limit the number of exited one ele
tron levels by a linearfun
tion. Su
h states are usually represented by Fo
k-Sleter determinants 
omposed from one ele
tronfun
tions whi
h are 
hosen from the 
ondition of zero energy variation of many ele
tron system (see ([Sl℄)).When 
omputing su
h determinants we have to ful�ll exponential work depending on its size and theirtotal number will grow exponentially as well. This is why existing algorithms of mole
ular simulationa

ount the number of ele
trons limited beforehand (for example, two ele
trons for ea
h valen
e boundonly, and even for these two ele
trons the 
omputation of state is ful�lled not in the whole spa
e but in theapproximation of mean �eld or the similar). Quantum states of nu
lei are not taken into a

ount at all,the nu
lei are 
onsidered as "balls with the springs" where the "springs" are determined by the stationaryele
troni
 
on�gurations and the Coulomb intera
tions between nu
lei. The 
orre
tions 
onne
ted withthe quantum 
hara
ter of the nu
lei movement 
an be then introdu
ed to su
h a model by hand. Forexample, the well known and very important phenomenon of a proton tunneling requires the quantumdes
ription in the form of wave fun
tion, not by the 
lassi
al way; the tunneling of a nitrogen atom in amole
ule of ammonia that results in the observed spe
trum of this mole
ule, hydrogen bounds et
. Thistype of more 
omplex phenomena 
annot be des
ribed in terms of "balls with springs", but this model yet
an be in prin
iple modi�ed to a

ount independent tunneling of separated nu
lei. But there exist more
omplex phenomena 
onne
ted with the quantum entanglement between ele
trons and nu
lei and betweennu
lei. The di�ra
tion of a mole
ule on a slit represents the simplest example of su
h entanglement. Herethe whole mole
ule behaves as a single quantum parti
le. Su
h a phenomenon in prin
ipal 
annot besimulated by the method of mean �eld or "balls and springs". These phenomena are 
alled "
olle
tiveex
itations". The known attempts to simulate su
h movements are based on serious limitations of themovements of parti
les in su
h systems. For example, in the work ([NF℄) it is assumed that the parti
lesare represented by the separated Gaussian wave pa
kages and thus this way does not give the universalmethod of the simulation of many body quantum systems.One more type of e�e
ts that are beyond the area of 
lassi
al simulation methods is 
onne
ted withthe ele
trodynami
s. The e�e
t of delay of an ele
tromagneti
 �eld a
tion on a slow 
harged parti
le andthe other relativisti
 e�e
ts 
an be always negle
ted in the 
omputation of atomi
 spe
tra. For example,the Lamb shift of energy levels is of the order 10−3 from the di�eren
e between the nearest levels. Butin the 
hemi
al rea
tions it is not admissible to negle
t the e�e
t of emitting and absorption of photons,for example, in photosynthesis it plays the key role; there exist the methods of 
ontrol over 
hemi
alrea
tions by laser impulses (see ([SB℄,[FTK℄).The ne
essity to a

ount the quantum nature of elementary parti
les in the study of mole
ular trans-3



formations was realized long ago, but it is di�
ult to do it pra
ti
ally due to the prin
ipal di�eren
esbetween quantum and 
lassi
al forms of dynami
s des
ription. The main di�
ulty in 
lassi
al many bodydynami
s arises from the instability of traje
tories. It results in the 
haoti
 behavior of the system5. Thisdi�
ulty disappears if we assume that the set of values of 
oordinates and speeds (in the 
lassi
al 
aseit is the spa
e of all one parti
le states) is grained as always is assumed in the 
omputer simulation. Inquantum 
ase this assumption 
annot resolve the problem be
ause the main di�
ulty is another. Herethe spa
e of one parti
le states is not the set of all values for 
oordinates (or speeds) but is a linear
ombination of all su
h values. It is impossible to redu
e su
h a state to one value of 
oordinate andspeed be
ause of the un
ertainty prin
iple: the more exa
t value of the 
oordinate we know the biggerdispersion in speed we shall have and vi
e versa. At the same time for the dynami
al des
ription we mustknow the 
oordinate and speed of a parti
le (in quantum 
ase - the amplitude distribution among all
oordinates or speeds). The ne
essity to use linear 
ombinations of all values of the dynami
al variablesis the prin
ipal and remains also if we assume that the set of su
h values is grained. It leads to theexponential growth of the dimensionality of many parti
le state spa
es that is the main obsta
le in thequantum 
ase. Just be
ause of this obsta
le the probability methods 
annot be the main tool in thesimulation of many body quantum systems.Simulation of many body quantum systems has several features that di�ers it from the other problemsof theoreti
al physi
s and that reveals the weakness of the 
onventional analyti
al formalism of quantumme
hani
s. Here the integral pi
ture is ne
essary that in
ludes not only unitary segments of evolutionbut also sequential measurements whi
h must be treated as independent from the existen
e of observerthat is hardly 
ompatible with the 
onventional analyti
al quantum formalism. The simulation based onthe analyti
al formalism thus requires 
easeless swit
hes from the quantum des
ription to the 
lassi
aland vise versa. The se
ond di�
ulty is the exponential growth of the spa
e of states dimensionality inthe quantum simulation. This di�
ulty makes the problem of algorithmi
 des
ription for the many bodyquantum systems the fundamental s
ienti�
 problem, be
ause it raises the question: how our world isdesigned, does it allow the e�e
tive 
lassi
al algorithmi
 des
ription or not. Of 
ourse, this question inits philosophi
al form is known for a long time - at least sin
e the formalization of algorithm. But afterthe invention of a Quantum Computer (QC) this question has turned into the 
on
rete s
ienti�
 problemwhi
h presumes the 
ertain solution. The point is that there is the 
lear pro
edure of veri�
ation: is agiven devi
e a QC or not. If the Hilbert spa
es of exponential dimensionality are an adequate formalismthen we have a prin
ipal possibility to 
reate a s
alable QC. This, still hypotheti
 devi
e 
ould solve some
omputational tasks substantially faster than any possible 
lassi
al 
omputer. For example, the problemof the fa
torization of integers 
an be solved by QC with almost exponential speedup (see ([Sh℄)), thesear
h problem - with quadrati
 speedup (see ([Gr℄)). It is very important that QC is able to solve manyparti
le Shroedinger equation in the time of order t2, where t is the physi
al time, or in other words it
an simulate quantum many body dynami
s without any simpli�
ations!6 The building of a s
alable QCwould mean the bankrupt
y of algorithmi
 approa
h be
ause no e�e
tive 
lassi
al algorithm 
an simulatethe work of QC. Really, if su
h a simulation is possible we would obtain the 
lassi
al algorithm that solvesall sear
h problems substantially faster than by brute for
e that is impossible7. I will not dis
uss here the
ondition of experimental works in quantum 
omputing that yet have not shown the evident su

ess (one
an address to the general ele
troni
 ar
hive http://xxx.lanl.gov). The development of QC te
hnologies is5The 
onventional way here is 
onne
ted with the appli
ation of various tri
ks based on the probability theory, forexample, thermodynami
s.6The idea of QC was put forward by Feynman, and also Benio� and some others in order to give the new prin
ipal wayfor the simulation of many body systems. This guess be
ame the exa
t result in the works ([Za℄) and ([Wi℄).7Stri
tly speaking it is not the established mathemati
al theorem but only generalization of that 
an be 
alled "math-emati
al pra
ti
e", e.g. a meta-mathemati
al proposition whi
h 
an obtain the exa
t form if we oversimplify it (theChur
h-Turing prin
iple represents a remote asso
iation). But the 
on
lusions of su
h "pra
ti
e" are usually assumed inphysi
s without obje
tions. The reason is that su
h oversimpli�
ation does not stret
h beyond the frameworks of usualabstra
tion whi
h is used in the transfer from the natural phenomena to the mathemati
al formalism. The transfer toalgorithmi
 approa
h just is the repla
ement of one type of formalism (analysis) to the other (algorithms).4
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absolutely ne
essary dire
tion in quantum physi
s that logi
ally follows from the 
onventional formalism.The logi
al 
hain: "algebrai
 te
hnique - many body wave fun
tion - QC" is absolutely fundamental. Themore detailed investigations of the existing approa
hes to the 
reation of QC as solid state quantum dots,ion traps and Josephson jun
tions (see ([VK℄)) 
on�rm the natural 
on
lusion: there is no prohibition tothe 
reation of a s
alable QC in the known physi
s. But the progress in the experimental area goes tooslowly that we 
an 
onsider the prospe
ts of the 
reation of QC as a single possibility. Just the absen
eof the 
lear advan
e in experiments is the main 
ause of the interest to the alternative - algorithmi
approa
h that we are going to 
onsider now.Two moments arouse suspi
ion that the prohibition of the existing of a s
alable QC 
an exist inNature despite of that it 
annot be derived from quantum me
hani
s. The �rst moment is 
onne
tedwith the de
oheren
e that is treated as the in�uen
e of environment to a quantum system and leads to anirreversible 
orruption of its state. Just the de
oheren
e is usually made responsible for the obsta
les inthe QC building. The short explanation of the sense of de
oheren
e in the standard quantum me
hani
slooks as follows. Let the �rst qubit |ψ〉sys denote the state of 
onsidered system8, |φ〉env - be the stateof its nearest vi
inity. If we initially prepared the system in a state |ψ〉sys = α|0〉sys + β|1〉sys, andits vi
inity was in an indi�erent state|0〉env, then it is reasonable to suppose that after the 
onta
t theextended system: "system + nearest vi
inity" will be in the state whi
h 
an be obtained from the initialstate before 
onta
t |Ψini〉 = (α|0〉sys +β|1〉sys)
⊗

|0〉env by the appli
ation of some entangling operator,for example, CNOT, and it results in the entangled state |Ψfin〉 = (α|0〉sys

⊗ |0〉env + β|1〉sys

⊗ |1〉env.If now the nearest vi
inity will intera
t with its nearest vi
inity, that in turn with its vi
inity et
., we�nally obtain the state of the form α|00 . . . 0〉 + β|11 . . . 1〉 (we omit the sign of tensor produ
t) wherethe dimensionality grows due to the permanent growth of the 
hain of vi
inities denoted by dots. Inthis moment in the framework of standard quantum formalism it is assumed that the observation of oneof these vi
inities results in the 
ollapse of the whole state and the initial system will be in one of thestates |0〉sys, or |1〉sys, whi
h means the a
tion of de
oheren
e. The weakness of this des
ription is 
lear- it requires the presen
e of an observer that is not permissible in the simulation be
ause it means thepermanent artifa
t be
ause an observer 
annot be des
ribed in the framework of this formalism even if wehave a QC. This is the irremovable feature of standard Hilbert formalism for systems of many parti
lesand it is always simply ignored and repla
ed by the referen
e to the 
lassi
al 
hara
ter of a measuringdevi
e ([Fe℄).The se
ond moment is that the exponential dimensionality of Hilbert spa
es for quantum systemsstates has never been 
he
ked experimentally. All the fa
ts approved in experiments and theoreti
allyexplained till nowadays 
an be derived from the theory by e�e
tive 
lassi
al algorithms. It means that thereal physi
s now lies within the bounds of e�e
tive algorithms, and there is no 
ontradi
tory eviden
e tothe universality of the algorithmi
 approa
h to physi
s. Pra
ti
al methods of 
omputations that redu
etheoreti
al s
hemes to e�e
tive algorithms 
an be 
ompli
ated but its heuristi
s is usually simple. Forexample in the 
omputation of wave fun
tions of stationary states of ele
trons in atoms the methodof mean �eld is usually applied instead of the solution of many parti
le Shroedinger equation, e.g., we
onsider the behavior of one ele
tron in the �eld indu
ed by the others a

ordingly to the probabilitydistribution of their 
oordinates. This method gives the satisfa
tory agreement with experiments, say itallows to �nd a good approximation of the energy of ionization, spe
trum and spatial 
on�gurations ofmole
ules. All more exa
t 
omputations in
luding, for example, relativisti
 
orre
tions 
an be obtainedby e�e
tive 
lassi
al algorithms as well.But the quantum formalism of Hilbert spa
es says that the exponentially small amplitudes λ, (whi
h
annot be observed dire
tly in any experiments be
ause the time 1/|λ|2 needed for their dete
ting is toolarge) 
an interfere 
onstru
tively in huge quantities and result in really observable values. In additionthis interferen
e 
an be organized so that it �ts in an admissible time. This is the essense of the quantum
omputing. But we still do not know are there su
h e�e
ts in the reality or not. At least all the phenomena8Qubit is taken for the simpli
ity. It 
an be repla
ed by a wave ve
tor in the spa
e of states of arbitrary dimensionality.5



that have the theoreti
al substantiation do not require the existan
e of exponentially small amplitudesfor this substantiation.The algorithmi
 des
ription of physi
s 
an be thus in prin
iple possible. If we assume that the su

essof approximate methods like Hartree-Fo
k in mole
ular 
omputations is not a

idental then it may bereal to 
reate a general e�e
tive algorithm for the simulation of many parti
le systems. Algorithmi
des
ription di�ers radi
ally from the traditional be
ause it is based on the notion of algorithms insteadof analysis of in�nitesimals; this new formalism 
an be 
alled algorithmi
 physi
s9. I venture to 
allthis approa
h the algorithmi
 physi
s; this name implies no analogies but only underlines the prin
ipaldi�eren
e between this approa
h and the 
onventional understanding of physi
al theories. In its generalform it 
an be 
onsidered now as a hypothesis, alternative to the hypothesis of a s
alable QC. The single
han
e to refute this hypothesis is to build a QC, we see no other way to reje
t the algorithmi
 physi
sdespite of that it is very di�erent from the usual physi
s.2 Main features of algorithmi
 physi
s2.1 General notesWhy do we need algorithms in physi
s and why the standard analysis and algebra are not su�
ient?Stri
tly speaking the physi
s needs algorithms as an auxiliary tool that is designed for the solutionof equations whi
h express physi
al laws. Algorithms and 
omputers are traditionally used in physi
sfor
edly, their usage is 
onne
ted with the well known fa
t that the systems of equations expressing themany body dynami
s in general 
ase have no analyti
 solution. In other words, if even we are able toexpress laws by formulas we 
annot derive analyti
ally pra
ti
ally important 
orollaries (traje
tories) fromthem. Just this gap in the traditional formalism was �lled by algorithms. In the algorithmi
 approa
h tothe 
lassi
al physi
s the derivatives are repla
ed by the 
orresponding di�eren
e s
hemes that redu
e theproblem to the tasks of linear algebra. The main drawba
k of this s
heme is the instability of 
lassi
altraje
tories. Small perturbation in the initial 
onditions leads to the large divergen
e in the limited timethat makes the method of �nite di�eren
es in many 
ases ine�
ient. But this obsta
le seems not fatal.The laws of 
lassi
al dynami
s lose its for
e when the distan
es be
omes less than 10−8 
m, be
ause in thisarea we must use the laws of quantum me
hani
s. Quantum evolution of a parti
le is a unitary operatoron its wave fun
tion that preserves distan
es, hen
e the small perturbation of the initial 
onditions 
anonly lead to the small divergen
e of the traje
tories independently of the evolution time (situation willbe di�erent if we admit measurements). At least in quantum me
hani
s we have no su
h an obsta
le forthe algorithmi
 approa
h as in the 
lassi
al 
ase.The algorithmi
 approa
h 
annot in�uen
e to the part of physi
s that is already known, be
ause allthe known fa
ts 
an be derived from the main laws and from some set of natural and simple assumptionsby e�e
tive 
lassi
al algorithms. The expli
it di�eren
e from the traditional understanding of physi
sin this approa
h is 
onne
ted to the possibility of the 
reation of a s
alable QC whi
h is allowed in thetraditional physi
s and forbidden in the algorithmi
 physi
s. But this devi
e still lies very far from theusual experiments and 
an be treated as a kind of abstra
tion. In addition one 
ould suppose that if evena s
alable QC is possible, its pra
ti
al implementation is too far from our possibilities in the foreseeable9Mathemati
al analysis is the traditional sound basis on whi
h the physi
al intuition is always brought up. Nevertheless,it is important to understand that everything has its limits. The standard analysis is thus good as the physi
al formalism upto the moment when it leads to something no 
omputable. There exists the 
ut version of mathemati
al analysis where only
omputable fun
tions are 
onsidered - the so-
alled 
onstru
tive analysis. It radi
ally di�ers from the standard analysis;for example, all fun
tions there are 
ontinuous. This version of analysis in many respe
ts better �ts to physi
s than thestandard one. The method of amplitude quanta des
ribed in the Appendix 1 gives the des
ription of quantum states just interms of 
onstru
tive analysis. But the method of amplitude quanta is the parti
ular method, and the algorithmi
 approa
h
annot be redu
ed to the repla
ement of standard analysis by the 
onstru
tive one. Parti
ularly, the usage of dis
ontinuousfun
tions is sometimes very fruitful for the 
onstru
tion of algorithms. In general, in the algorithmi
 physi
s all des
riptivetri
ks are admissible, but only in the framework of the e�e
tive 
omputational pro
edures.6



future, and this argument for the re
on
iliation with the traditional viewpoint would seem valid. One
ould thus 
on
lude that the algorithmi
 approa
h simply re�e
ts the pra
ti
al attitude of programmersto physi
s and we 
annot wait from this approa
h more than improvements of the existing numeri
almethods. But this opinion is wrong. Algorithmi
 approa
h di�ers radi
ally from the traditional be
auseit gives some new understanding of the physi
al problems and new treatment of su
h a key phenomenonas de
oheren
e. The severe limitation of the 
lassi
al 
omputational limits for simulation di
tates the"
ut-o�" des
ription of unitary evolution as 
ompared to hilbertology10. Su
h a des
ription must 
ontainsoft measurements of a 
urrent state be
ause we have no su�
ient 
omputational resour
es for the exa
tsimulation of a unitary many body evolution, and these measurements are su�
ient for the simulationof de
oheren
e. We thus must not look for the de
oheren
e spe
ially, be
ause it arises in the modelindependently of our wish, as the measure of the deviation of the 
lassi
al des
ription from Hilbertformalism for many parti
les.The most natural way of su
h a "
ut-o�" of Hilbert formalism is as follows. We simply do not a

ountthe deposit of states with too small amplitudes to the wave fun
tion. Namely, let T be the a

essiblesize of a 
omputational resour
e (the number of steps of an algorithm or the number of elements inthe memory). We then 
onsider as zero all the amplitudes λ su
h that |λ| < 1√
T
. It means that we
onsider as impossible su
h an event whose quantum probability is too small to make it observable in thea

essible time frame T . Of 
ourse, we have no method to determine the fa
tual value of T , but if we
hoose it starting from the 
apa
ity of the existing 
omputers we 
ould simulate many parti
le evoltionswith the maximal a

ount of all quantum e�e
ts. We thus assume that an amlitude is not 
ontinuousbut grained, where its grain ǫ - is the minimal nonzero value of an amplitude module is so small thatits dire
t measurement is impossible be
ause of the huge waiting time 1/ǫ2 so rare events. But if ǫ isnot exponentially small this must be
ome apparent in the many body quantum problems, in parti
ularit makes impossible the 
reation of a s
alable quantum 
omputer.We shall see below that this simple rule of 
ut-o� easily gives two important things: the explanation ofBorn rule for the 
al
ulation of a quantum probability as a squared module of amplitude, and the uniformdes
ription of a quantum dynami
s in
luding unitary evolutions as well as a de
oheren
e. Moreover, thisrule makes possible to obtain the 
lassi
al des
ription of dynami
s from the quantum des
ription withoutany arti�
ial tri
ks. The desirability of su
h a uniform des
ription was expressed from the very beginningof the history of quantum me
hani
s11. We produ
e some reasons for that su
h a des
ription 
an beobtained in the framework of the algorithmi
 approa
h.A

eptan
e of an algorithm as a basi
 notion of physi
s instead of the analyti
al and algebrai
 for-malism leads to the far-rea
hing 
onsequen
es. Computational methods that give a good approximationto experiments must be a

epted as a �rst prin
iple des
ription where any ina

ura
y is regarded as adefe
t in used algorithms or as a bad initial data. The analyti
al formalism must be then 
onsideredas the form of instru
tions for the 
omposing of simulating algorithms and the tool for debugging. Thelimitations of the purely algorithmi
 nature must be treated equally with the fundamental physi
al laws.Parti
ularly it means that the irreversibility of quantum state 
orruption in a measurement or in a de-
oheren
e must be treated not as the result of the a
tion of observer but as the result of shortage of the
omputational resour
e for the des
ription of 
urrent state. This treatment is absolutely una

eptablefrom the traditional viewpoint but it leads to no expli
it 
ontradi
tions. This removes an observer fromthe des
ription of quantum dynami
s and gives to the algorithmi
 formalism su
h a 
ompleteness that isla
king in the standard quantum theory.The following feature of the algorithmi
 approa
h is that the model must be divided into two segments:the user segment and the administrative segment that is 
onne
ted with the appli
ability of the "freewill" prin
iple. All the part where this prin
iple is valid belongs to the user segment. The rest part of10This term is proposed by Sergei Molotkov.11See, for example the famous polemi
s between Einstein and Bohr. In several re
ent works this dis
ontent with thisstrange feature of quantum physi
s leads to the attempts to �nd its 
onne
tion with the phenomena of 
ons
iousness (see,for example [Pe℄, [Ha℄). 7



a model that 
ontains the information to whi
h this prin
iple is inappli
able and whi
h is only neededfor the right "�lm" showing belongs to the administrative segment. For example, the 
oordinates of allthe points in the 
onsidered area of the spa
e-time belongs to the user segment be
ause a user has freea

ess to this area. Any traje
tory in the light 
one lies in the user segment be
ause it 
an be realizedin prin
iple. In general, any pro
ess that 
an be des
ribed in terms of the so-
alled lo
al realism (e.g.,without the quantum long-range a
tion) must belong to the user segment. The simplest explanationof the ne
essity of the administrative part is shown by entangled states of photons (EPR pairs). If twodete
tors measuring photons are disposed at the large distan
e one from another then we 
annot simulatethe dete
tion of EPR pair by the user part only. Really, let us imagine that the orientation of one dete
tor
hanges so fast that the light signal about this 
hange 
annot rea
h the se
ond dete
tor in the time ofexperiment. Having the "free will" in the user part to whi
h the both dete
tors belong we 
an do it andrandomly. The statisti
s of the se
ond photon measurements must not then 
hange in 
omparison withthe 
ase when the �rst dete
tor is �xed, but the joint statisti
s will 
hange. If we have the user segmentonly we 
annot simulate this experiment without the assumption that some obje
t transmitting a user'sinformation moves along a traje
tory whi
h goes outside the light 
one that is impossible. We thus seethat the administrative part of the model is ne
essary for the right des
ription of the quantum long-rangea
tion.The weak side of the algorithmi
 approa
h is that it 
an be 
ontextual. If we limit our 
onsiderationby 
lassi
al algorithms with polynomial 
omplexity, then for the des
ription of quantum systems we mustsomehow restri
t the growth of the dimensionality of the spa
e H of states, that means the 
hoi
e ofsome subset H0. For example for the ele
troni
 
on�gurations of a mole
ule when the spatial positionsof its atoms nu
lei are �xed, the 
hoi
e of H0 is redu
ed to the 
hoi
e of one ele
tron fun
tions and theirgroups from whi
h the Fo
k-Sleter determinants are formed. But the numerous works on quantum theoryof mole
ules witness that there 
an be no universal way to 
hoose these fun
tions that is valid for allmole
ules. It means that the 
hoi
e of basi
 wave fun
tions for one parti
le may depend not only on itstype but also on its vi
inity, e.g., on the positions of the other parti
les (in the 
ase of mole
ules it is theposition of atoms). The properties of the parti
les essential for the algorithmi
 approa
h may depend ona 
ontent within whi
h these parti
le are 
onsidered. If we speak about the simulation of the dynami
sit means that the 
hoi
e of subset H(t)0 depends on the state of environment H(tenv)env in the moments
tenv ≤ t, where t denotes here not the physi
al time but the time in the administrative part, that isproportional to the number of steps of the simulating algorithm12. This 
onne
tion of the 
onsideredquantum system with the environment is determined by the entanglement and it is unavoidable in anyapproa
h to the simulation of quantum systems. Hen
e to des
ribe the 
onsidered system and to 
hoose
H(t)0 optimally it is ne
essary to have some a-priori model of its behavior. The simulation in the usualsense when we �x the initial 
ondition independently of the model and obtain the result at the end - maybe sometimes impossible. If we do not know beforehand the form of H0, then the single way will be to
onsider the whole Hilbert spa
e that immediately leads us to the insurmountable phenomenon of QC.This di�
ulty results from the following evident fa
t. The size of 
omputational resour
es that wehave at our disposal 
an be roughly estimated by the number 109. In the foreseable future this number
an grow 3-4 orders at most, mainly due to the parallel 
omputations and the 
reation of 
omputational
lusters. In the same time the number of atoms in the density pa
king in one 
ubi
 
entimeter is about
1024. We see that the gap between our 
omputational 
apa
ities and the sizes of systems that we planto simulate is more than 15 orders. If we a

ount the spatial degrees of freedom that is ne
essary forthe real simulation even without entanglement, this gap will grow up to about 24 orders. Even if themain hypothesis of the algorithmi
 approa
h is right and the Nature is the gyganti
 
omputational net,the dire
t modeling of su
h a net by the known 
omputational tri
ks that are fa
tually "
al
ulations byformulas", like the method of �nite di�eren
es 
an be su

essful if only the growth of total numbers of12The 
onne
tion of this time with the lo
al physi
al time depends on the simulated spa
e, and we will tou
h this subje
tin the Appendix 2. 8



atoms in the 
onsidered system does not lead to the substantial 
hange in its behavior (for example,for regular 
rystalls). But in the very important 
ases when the 
omplexity of the behavior essentiallydepends on the system size su
h methods lead to the straight 
ompetition of our 
omputer with the realsystem and here we have no 
han
e of su

ess. Quantum e�e
ts, entanglement are among su
h 
ases.The existen
e of su
h e�e
ts is proved in the numerous di�erent experiments but we know too little howthey in�uen
e to the well known pro
esses with observable results, for example to 
hemi
al rea
tions.Fa
tually, almost all that 
an be taken from the analyti
 and algebrai
 approa
h is still embodied inthe dire
t 
omputational methods that we spoke about earlier, and moreover - in the existing softwareprodu
ts. In what follows we 
an believe mainly in the 
omputational pro
edures of the di�erent kindthat originate from the so 
alled semi empiri
al methods. The geneti
 algorithms belong to this kind ofpro
edures. The simulated many atom stru
ture 
an be divided into the small parts and use the di�erentmethods of �nding of the ele
tron states in ea
h part. After some time we 
an 
ompare the resultsand 
hoose from these methods the small number of those whi
h give the most adequate pi
ture of theevolution. We 
an then 
ombine su
h sele
ted methods and repla
e by them and by their 
ombinations allthe others. We then repeate this loop again and again varying the parameters of the sele
tion dependingon what part of the stru
ture they are applied to, et
. As the methods we 
an use: the form of aprobe fun
tion that approximates the exa
t wave fun
tion, or the methods of �nding of the dire
tionand frequen
y of emitted photons, or the form of amplitude quanta traje
tories (see Appendix 1). Thepassage to su
h purely algorithmi
 
onstru
tions in the simulation seems unavoidable.In any 
ase we must have a-priori representation about the behavior of the simulated system thatwill be spe
i�ed after ea
h user's review of the "�lm" based on this representation. The debugging ofthe model will have iterated 
hara
ter and in ea
h step of it the user will have more and more exa
tpi
ture of the simulated evolution. Just this pro
ess of debugging will repla
e the axiomati
 building ofquantum physi
s (see ([BS℄). Of 
ourse, it is not a breaking-o� with the tradition quantum theory butthe 
hange of a

ents only. For example, the 
onventional formalism of quantum physi
s will be not themain instrument but rather the tool for debugging of simulating programs.The aim of this arti
le is the dis
ussion of some possible ways of the development of algorithmi
physi
s independently of the general fate of this approa
h. This dis
ussion 
an be useful to those whotry to simulate the pro
esses where quantum e�e
ts play the substantial role.2.2 User and administrative parts of a modelIt follows from the above explanation that the prin
ipal di�eren
e between the algorithmi
 and standardapproa
hes results from the nature of algorithms: in general 
ase there is no method to learn the resultof their work on a given initial data but the sequential ful�lling of elementary steps determined by thisalgorithm13. Some 
orollaries from this surprising feature are dis
ussed in the next se
tion. Here we
onsider in more details the general stru
ture of the algorithmi
 model, that has been already mentioned,namely its separation into the user and administrative segments that 
an be treated as the pe
uliardis
retionary a

ess 
ontrol.Sin
e the model must show the dynami
al pi
ture of the system behavior its user segment must 
ontainthe des
ription of obje
ts with the physi
al sense - elementary parti
les. The administrative segment
onsists of elements with no physi
al sense. The ne
essity of the administrative part is substantiatedby the known experiments (see, for example, ([As℄, [B℄, [Be℄)), establishing the impossibility of the lo
alrealism in quantum physi
s or, in other words, the violation of the Bell inequalities.The simplest example showing the ne
essity of the administrative part in the model for the massiveparti
les is the demonstration of its entangled states. We 
onsider the pure state of the system of the13This thesis remains valid even if we use a quantum 
omputer for the predi
tion of the work of 
lassi
al one. Themajority of not long 
lassi
al 
omputations do not allow quantum speedup even on one step (see ([Oz℄).9



two parti
les of EPR type:
Ψ = α|0102〉 + β|1112〉, (1)and try to distinguish it from the mixed state ρ, in whi
h the fra
tions of the pairs in state |0102〉 and

|1112〉 are |α|2 and |β|2 
orrespondingly. To atta
h the physi
al sense to this situation we assume that |0j〉and |1j〉 denote the spatial positions of the parti
le j, j = 1, 2. Intuitive sense of entanglement of the state
Ψ is that not only the 
oordinates of the two parti
les are stri
tly 
onne
ted (here simply equal), but alsoimpulses; this is just the di�eren
e of the state Ψ from the mixture ρ. If we measure only the 
oordinatesof both parti
les in state Ψ, we obtain exa
tly the same result that will be if the system is in state ρ, sothis measurement 
annot distinguish these two 
ases. But if we measure impulses of these parti
les we�nd out the di�eren
e between Ψ and ρ. If in the �rst 
ase impulses will be always equal, then in these
ond 
ase we obtain the full dispersion in the measured values due to the un
ertainty prin
iple appliedseparately to ea
h parti
le whi
h are independent in state ρ and whi
h 
an be thus 
onsidered as patternsof the same parti
le that is in the state |0〉, or in the state |1〉. For the substantiation we must turn tothe impulse representation of the wave fun
tion. In the 
hosen designations the Fourier transform givingthe impulse representation of the wave fun
tion 
an be repla
ed by its zero approximation: Hadamardtransform of the form

(

1√
2

1√
2

1√
2

− 1√
2

)

, (2)that is applied to ea
h qubit. It is straightforwardly veri�ed that it remains the state Psi un
hangedand the following measurement (it will be the measurement of impulses) again gives the equal values forboth qubits. In 
ase of mixture ρ the situation will be di�erent. Here Hadamard transform applied toea
h qubit gives the mixed state in whi
h there are the both pure states 1
2 (|00〉+ |01〉+ |10〉+ |11〉) and

1
2 (|00〉−|01〉−|10〉+|11〉)with probability 1/2 ea
h. Hen
e in the 
ase of initial state ρ the measurement ofimpulses gives the uniform distribution of impulses of the both parti
les among all possible 
ombinations.One 
an 
he
ked that this 
on
lusion is also valid if we take the �rst approximation of Fourier transform(with the π/2 phase shifts) instead of zero approximation. We see that there exist entangled statesprin
ipally di�erent from mixtures of not entangled states and su
h states 
an be dete
ted in experimentsnot only with photons but with the massive parti
les as well.We 
on
lude that it is impossible to simulate a wave fun
tion 
ollapse and entangled states basingonly on the lo
al intera
tions, and it is ne
essary to have the administrative segment of the model. Theadministrative segment is not a

essible to users; in parti
ular they 
annot obtain its state in a givenmoment. It 
ontains the data that is 
alled hidden parameters, but it is important that these parame-ters are not lo
al - they are 
onne
ted with the spatially distant points. The information determiningthe entanglement is stored just in this segment of the model. Users 
annot address dire
tly to this ad-ministrative 
hannels to the information ex
hange. The simulation of moving parti
les has its spe
ialrestri
tions. We 
annot simulate an arbitrary speed of the movement be
ause it is ne
essary to tra
e thepassing of a parti
le through all intermediate nodes of the spatial grid used in the simulation, and ea
hsu
h node requires some amount of the time. There are thus the limits on the possible speed that 
an besimulated and this limit is determined by the frequen
y of the simulating pro
essor. We thus see that therelativisti
 limit on the information transfer results from the ina

essibility of the administrative part forusers14.We treated the division of the model into two segments as the pe
uliar dis
retionary a

ess 
ontrol. Forthe simulation it is ne
essary that the administrative segment, at �rst disposes the 
omplete informationabout the intentions of a user, and se
ondly has the possibility of instant a

ess to the remote points of thephysi
al spa
e. We nevertheless assume that the possibilities of the administrative part are not boundlessbut limited in its turn by the theory of 
lassi
al algorithms. In parti
ular, the memory a

essible to the14One of the possible ways for the simulation of the relativisti
 pseudo Eu
lidean metri
 in the spa
e-time is shown inthe Appendix 2. 10



model grows linearly with the size of simulated physi
al spa
e. It 
an be formalized by a multihead Turingma
hine, for whi
h the instant a

ess means the appli
ation of rules 
ontaining states of many heads.It is des
ribed in more details in Appendix 2. We note here the 
onne
tion between the dis
retionarya

ess 
ontrol and the appli
ability of a "free will" prin
iple. The priority of the administrative segmentin our model fa
tually means that a user's "free will" is 
onditioned expli
itly on its 
onne
tions withthe unlimited external world15. If there are not su
h 
onne
tions a user itself 
ould be in
luded in themodel with the su�
ient 
omputational resour
es.2.3 Des
ription of measurements. Obtaining of Born rule for quantum prob-abilityBorn's rule for the quantum probability has the form
p(A) = |〈A|Ψ〉|2, (3)where A is a ve
tor belonging to a basis e1, e2, . . . 
orresponding to the measurement, |Ψ〉 - is a measuredstate. (In the physi
al terminology e1, e2, . . . is a basis 
onsisting of eigenve
tors of Hermitian H whi
hdetermins this measurement.) Born rule is the single link of the traditional (
openhagen) formalism that
onne
ts quantum me
hani
s with the 
lassi
al and this rule is assumed as a key axiom in this formalism.The status of this rule makes impossible to obtain a uni�ed des
ription of quantum dynami
s whi
hwould be independent of the existen
e of an observer (fa
tually of an observer's "free will"). This iswhy attempts to derive Born rules from something more fundamental do not end up to nowadays. The
entral point and the main 
ause of failure in this dire
tion was the absen
e of a 
lassi
al urn s
hemefor the quantum probability that would redu
e Born rule to the frequen
y de�nition of probability, andthat would be natural from the physi
al viewpoint (an arti�
ial introdu
tion of an urn s
heme is possiblebut it is not interesting). One of the last attempts was done by Zurek (see. ([Zu℄)). His proposal isbased on the operation of swap between quantum states leading to the equality of amplitude modules ofelementary events, that is not 
ompletely natural from the physi
al viewpoint. (see ([Mo℄, [SF℄)). Thatproposal is based on the standard approa
h with Hilbert states in the spirit of Gleason's theorem (([Gl℄),see also ([CFS℄, [Bu℄)16. The des
ription of Born's rule represented below di�ers from Zurek's in that itis based on an amlitude quantum but not on the swap operation.We give the des
ription of Born's rule starting from the 
on
ept of an amplitude quantum.The 
onsideration of quantum evolution from the viewpoint of the many parti
le Hilbert formalismgives the states of the form
|Ψ〉 =

∑

j

λj |ej〉, (4)where the summing is spread to the in�nite set of basi
 states |ej〉. The algorithmi
 approa
h requiresthe 
onstri
tion of this sum to the �nite sum by the 
utting of all the summands with 
oe�
ients λj , whi
hmodules are less than some �xed threshold ǫ. Su
h a sum will 
ontain no more than 1/ǫ2 summands. Let
N be the number of the basi
 states for one parti
le. We 
an take ǫ = 1√

N
. The resulting state thus hasthe form15By external world we mean not only the ma
ros
opi
 and megas
opi
 universe, but the potential mi
ros
opi
 universeas well, e.g., the possible stru
ture of elementary parti
les.16Already after the �nishing of this paper my attention to the Zurek's interpretation and to the series of arti
les 
onne
tedwith it and with Gleason's theorem was attra
ted by A. Sheverev ([She℄). This theorem says that every nonnegative fun
tionon ve
tors in a Hilbert spa
e of dimensionality more than 2, whi
h is a probability measure on all basi
es of this spa
ehas the form (3) for some ve
tor Ψ. The limitation on the dimensionality is the indire
t eviden
e of the redundan
y ofthis theorem for the quantum physi
s, be
ause in the reality we always deal with some 
on
rete wave fun
tion (for thedimensionality 2 the 
ounterexample is straightforward). 11



|Ψ〉 =

N
∑

j=1

λj |ej〉, (5)where some summands 
an be zero.This pro
edure of elimination of all summands whi
h modules of amplitudes are less than ǫ is 
alled aredu
tion. This 
onstant ǫ > 0 is 
alled an amplitude quantum. We agree to ful�l a redu
tion over ea
hstate that we obtain in our simulation pro
ess. Su
h redu
ed states are 
alled admissible.We now show how the redu
tion, e.g., nulling of the small amplitudes, gives Born rule for the �ndingof quantum probability. Our aim is to redu
e the �nding of probability to obtain a 
ertain basi
 state Ain the measurement of a quantum state Ψ to the appli
ation of the 
lassi
al rule
p(A) =

Nsuc

Ntotwhere Nsuc is the number of su

essful out
omes (e.g., su
h elementary events whi
h mean the realizationof the eventA), Ntot - the total number of all elementary events. We have to de�ne the set of all elementaryevents and establish the 
orresponden
e between them and basi
 states of the system. We 
all elementaryevents su
h basi
 states of the extended system (measured system + measuring devi
e) whi
h amplitudemodules in a given state equal to an amplitude quantum ǫ. A set of elementary events thus depends ona quantum state of extended system.Let |Ψj〉 denote basi
 states of a 
onsidered system and |Φj〉 denote basi
 states of a measuringapparatus (that 
an be an eye of observer). The 
onta
t between these two obje
ts results in the stateof the form
∑

j

λj |Ψj〉
⊗

|Φj〉 (6)Sin
e the measuring apparatus is very massive in 
omparizon with the measured obje
t, when tryingto des
ribe its quantum states we have to split the states from (6) to the sums of lj basi
 states (all statesof numerous parti
les inside the measuring apparatus must be taken into a

ount, like nu
lea, ele
trons,et
.). In the other words, even if in the instant of 
onta
t there was the state |Φj〉, the evolution veryqui
kly transforms it to a state of the form |Φ′
j〉 =

lj
∑

k=1

µj,k|φj,k〉, where all lj grow very qui
kly up to theinstant when amplitudes rea
h the value of an amplitude quantum and they will be nulled. Hen
e all themodules of amplitudes µj,k must be then taken as approximately equal. If we substitute the expressionfor |Φ′
j〉 instead of |Φj〉 into the (6), the amplitude of states φj,k will be about λj√

lj
due to the unitarityof evolution.We have to ful�l the redu
tion that is to null all summands φj,k whi
h amplitude is too small. Sin
ethe time frame when the splitting to su
h summands happens is negligible, in the 
omputations it meansthat we split ea
h summand in (6) to lj new summands so that modules of all resulted amplitudes are 
loseto the amplitude quantum and approximately equal, be
ause only this supposition makes this splittingequitable to all the states before the redu
tion that is required for the implementation of a 
lassi
al urns
heme17. But the total number lj of the summands with the �rst fa
tor |Ψj〉 is exa
tly the total numberof su

essful out
omes, and it is proportional to |λj |2, and if exa
tly one of them survives in the redu
tionwe obtain the Born rule for the quantum probability.A probability spa
e thus depends on the 
hoi
e of a wave fun
tion |Ψ〉. We 
onsider fa
tually the
onditional probabilities to obtain this or that result in the measurement of the system provided it is17Approximate equality of amplitude modules before the redu
tion 
orresponds also to the urn s
heme based on amplitudequanta; see, for example, Appendix 1. 12



initially in a state |Ψ〉. We note that despite of the apparent narrowing of formulation 
omparatively toGleason's theorem just su
h probability spa
es have the physi
al sense.This explanation of Born rule is based on the notion of redu
tion of quantum state as the nullingof too small amplitudes. We agree to ful�l this redu
tion at ea
h step of the simulation of a quantumevolution be
ause otherwise the simulation would be impossible at all. In our approa
h the spe
i�
ity of ameasurement 
omparatively with the unitary evolution is only quantitative: a measurement happens in aninstant when the system 
omes into 
onta
t with the massive obje
t that 
an be 
alled an environment.It results in the splitting of the sumnads in (6) to the big number of new summands. In addition tothis natural supposition we used only the norming of the wave fun
tion whi
h 
onservation results fromShroedinger equation. In the explanation of Born rule no suppositions were applied that ex
eed thebounds of 
onventional agreements of quantum me
hani
s but one: the redu
tion of a wave fun
tion thatis treated as a nulling of small amplitudes. Just this pro
edure of redu
tion transforms the set of Feynmanpaths to the 
lassi
al traje
tory in 
ase of a massive body (see Appendix 1). We treat the de
oheren
eas the forming of entangled states of the (6) with the environment e.g., we do not distinguish it from themeasurement of our system. Born law for the quantum probability and irreversible 
orruption of a stateresulted from the de
oheren
e thus follows from the grain of amplitudes.Algorithmi
 approa
h thus gives the uni�ed des
ription of a unitary evolution and a measurementthat gives the independent of an observer des
ription of quantum dymani
s. This is the advantage ofalgorithmi
 approa
h, be
ause the 
onventional formalism does not give su
h a des
ription and dependsprin
ipally on the presen
e of observer18.In the algorithmi
 simulation we thus must not espe
ially a

ount that somebody observes our system.Moreover, an observer itself (if any) 
an be in
luded to the simulated system without any 
hange of thesimulating algorithm, provided this observer is independent of environment. The single reason that makesimpossible to simulate itself (that would lead to logi
al 
ontradi
tions) is insurmountable limitation ofthe somputational resour
es, be
ause for the exa
t simulation of some system the other system is requiredwhi
h is mu
h bigger.2.4 Hierar
hi
al model of quantum many parti
le dynami
sThe 
entral point of the algorithmi
 approa
h is the 
hoi
e of subset of states H′ of the simulated systemwhi
h des
ription must grow not too fast when the number of parti
les in
reases. The admissible speed ofgrowth is the linear be
ause only in this 
ase we have at least a theoreti
al possibility to 
reate in future(with the most powerful of 
lassi
al 
omputers) "�lms" des
ribing the behavior of the living matter19.The 
hoi
e of su
h a subset H′ is the radi
al break with the many parti
le Hilbert formalism and with thehope to simulate a s
alable quantum 
omputer. This subset in the general 
ase is not a subspa
e be
ausewe base not on analyti
al properties as linearity but on a possibility to des
ribe an evolution by e�e
tivealgorithms. From the traditional viewpoint it means that we 
hoose the approximation to the solution ofmany parti
le Shroedinger equations. There is too big un
ertainty here to use purely algorithmi
 heuristi
tri
ks like geneti
 algorithms, and we have to expli
itly point the form of this subset. We start with theevident for the algorithmi
 approa
h limitation on the 
omplexity of the quantum state notations for nparti
le system, that is the length of this notation in terms of sums and tensor produ
ts must be limitedfrom above by some 
onstant20. It is naturally to assume that this 
onstant must depend linearly from
n. We show how the quantum dynami
s 
an be simulated in terms of su
h states. We represent some18That immediately raises the question about what obje
t posesses the status of observer. All who 
onsidered thefoundations of quantum theory noti
ed this paradoxial situation. It is important that su
h a dependen
e of quantum theoryon an unintelligible obje
t whi
h 
auses the de
oheren
e (and the un
lear treatment of the de
oheren
e itself) deprivedquantum theory of the possibility to submit all area of mole
ular phenomena, and �rst of all su
h phenomena that are
ru
ial for the fun
tioning of living organisms.19Even in the 
ase of quadrati
 speed this hope will disappear.20See ([Aa℄). 13



heuristi
 arguments for it that issue from the feature of algorithmi
 approa
h and partially generalize theknown set of 
omputational tri
ks used in quantum 
al
ulations. The main of these arguments is thatthe method proposed is 
losest to the one parti
le des
ription in sense of the algebrai
 notation of states.The dire
t method of simulation looks as follows. We 
onsider not an evolution of a wave fun
tion
|Ψ(t)〉, but an evolution of a pair of the form |Ψ(t)〉, P (t), where P = {x̄1, x̄2, . . . , x̄L} is a set of pointsof division of the 
on�guration spa
e for many parti
les su
h that their density is proportional to thesquared module of the wave fun
tion: ρ(t) ≡ 〈Ψ(t) | Ψ(t)〉, and their total number L = 1

g2 , where g isa given value of the amplitude quantum (that is mush less than the value existing in Nature). For thesimpli
ity we 
an assume that these points are lo
ated so that the di�eren
e s
heme for Lapla
ian forea
h of the parti
les in the 
onsidered system is appli
able with them. Moreover, we 
an assume thatthat for every �xation of any s − 1 parti
les the total number of the points of division for the rest oneand their density obey the same law. The following wave ve
tor |Ψ(t+ ∆t)〉 then is obtained from |Ψ(t)〉by the appli
ation of the dinite di�eren
e s
heme for Shoedinger equation and the new set of the pointsof division P (t + ∆t) is obtained from the new wave fun
tion a

ordingly to the 
ondition of densitystated above. For the improvement of the values of the new wave fun
tion in intermediate points whi
hare in
luded in the new division we 
an use the methods of approximation (for example, splains). Su
h amethod is based immediately on an amplitude quantum value and it allows to a

ount the entanglementof every type between the simulated parti
les in the framework di
tated by this value. But just due to itthis method 
an be not e�e
tive, be
ause the real value of g 
an be mu
h less than that is addmissible tothe real super
onputers. We then des
ribe the approa
h whi
h is more universal for the 
omputations.It is based on the 
on
eption of the hierar
hy of parti
les and the dire
t method will work as a part of itin the moment when this hierar
hy will be rebuilding.Sin
e our aim is to learn how to 
reate realisti
 "�lms", all our approa
h must be based on the
on
ept of parti
les whi
h will be the main obje
ts of su
h "�lms". For the s
alability we must keepin mind that every parti
le (perhaps, but photons only) 
an 
onsist of more elementary parti
les andour approa
h must admit the 
orresponding s
alability. We thus 
onsider some groups of parti
les asparti
les as well; for example nu
lei, atoms and mole
ules, or more spe
ial groups as Cooper ele
tronpairs and quasi parti
les, e.g., all the groups whi
h 
an be 
onsidered as a whole parti
les. Here we
onsider a group as a parti
le if the appli
ation of Shroedinger equation for one parti
le (that is the singletype of Shoedinger equations whi
h 
an be solved by 
lassi
al 
omputers) gives the sensible result forthis obje
t. We further 
on
retize this informal explanation. We separate the 
lass of maximal parti
les
onsidered in the model - they will have the zero level, whereas the elementary parti
les whi
h 
annot besplitted by using the 
onsidered intera
tions will have the biggest level. We restri
t our 
onsideration byele
tromagneti
 intera
tions, thus in our 
ase ele
trons, photons and nu
lei will have the biggest level21.We 
onsider two main 
omputational tasks: the simulation of unitary evolution, e.g., the modelingof operator exp(− iH
h t), and the �nding of eigenstates |φk〉 of some Hamiltonian H . Let us estimate thetime required for it if we use the dire
t method. For simpli
ity we 
onsider a system with 2 parti
les.For su
h a system the total number of basi
 states is N2. The matrix of Hamiltonian has the dimension

N2 × N2 and one step of the evolution requires N4 elementary operations, hen
e for the time frame tthe total number of them 
annot be less than N2t, that takes pla
e for the method of �nite di�eren
esapplied to Shroedinger equation. For the task of �nding eigenstates we have to solve the 
hara
teristi
equation for the matrix of the size of the order N2 ×N2, that requires about N12 operations. If we usethe spa
e grid with 10 points to ea
h dimension that is the less admissible a

ura
y for one parti
le wehave N = 1000 and the �nding of eigenstates of two parti
le Hamiltonian requires 1036 operations thatmakes the dire
t method useless even for super
omputers and parti
ular tasks where the Hamiltonianhas symmetri
 form. In the pra
ti
al 
omputations for su
h tasks the 
onventional methods are: the21Nevertheless, the proposed approa
h is seemingly appli
able to the nu
lear intera
tions as well. At least, the possibilityof ranging in the line to the in
reasing of embedding depth of parti
les is exists in the hierar
hi
al model. It is 
onvenientfor the uni�ed des
ription of the di�erent types of intera
tions, for example, ele
tromagneti
 and nu
lear.14



method of density fun
tionals (see ([LA℄), or Hartree-Fo
k method. Hartree-Fo
k method is based onthe representation of many parti
le wave fun
tion for a system of n identi
al fermions as a Fo
k-Sleterdeterminant (see ([Sl℄)).It means that we a

ount the entanglement between parti
les that 
omes from their ex
hange in-tera
tion but not from Coulomb intera
tion. To a

ount the entanglement that 
omes from Coulombintera
tion we should represent the wave fun
tion as a sum of determinants of the form (16):
∑

j

µj |Ψj〉. (7)But this representation 
ontains the in�nite row and the dire
t generalization of Hartree-Fo
k methodto this 
ase gives a boundless problem instead of robust method for (16) be
ause we have no guidelines forthe 
hoise of µj , for example, if some of them is not negligible in 
omparizon with ǫ, we 
annot a

ountthe 
orresponding summand. The density fun
tional method does not a

ount the entanglement at all;it is �ne for the 
ases where the density of wave fun
tions is almost the same (for example, for ele
tronsin metals), but for atomi
 and mole
ular 
omputations this method gives a big error.We now des
ribe the method that makes possible to a

ount all the types of entanglement betweenthe parti
les in the assumption that the real amplitude quantum g is mu
h less than the value of ǫ whi
his equal to 1√
T
, where T is the total number of elementary operations of the fastest real super
omputerin the maximal time frame in our disposition.The maximal parti
les are 
alled the parti
les of the zero level. The parti
les of the �rst level will bethe biggest parts of parti
les of the zero level, et
. The 
hoi
e of parti
les of a level n thus means the
hoi
e of the grouping of parti
les of the level n+ 1; in the �rst step this is the task for a user. For thefurther steps we will formulate the rule for the 
hange of this hierar
hy. The general re
ommendation isonly that this pro
edure must give the obje
ts to whi
h the appli
ation of the notion of wave fun
tionsand Shroedinger equation leads to the sensible result. Ea
h parti
le a of the level n thus has its spatial
oordinates xa, ya, za and spin 
oordinate sa. These 
oordinates 
an be often treated as 
oordinatesof the 
entre of mass Ca of the set of minimal parti
les forming a and all parti
les inside of a. Let

a1, a2, . . . , as be the parti
les of level n+1 that form a. Their 
oordinates in the 
oordinate system whi
hinitial point is Ca are 
alled the relative 
oordinates.In what follows we will use the qubit notation of wave fun
tions |Ψ(r̄)〉 in the form
∑

r̄

λr̄ |r̄〉 (8)where r̄ is a binary notation of numeri
al value of 
oordinates of all parti
les in the 
onsidered system;let the length of this string be n. Here a value of an ordinary wave fun
tion |Ψ(r̄)〉 is proportional to λr̄.We assume the natural lexi
ographi
 order on the string r̄ whi
h exa
tly 
orresponds to the 
ase of oneparti
le in one dimension spa
e, but our 
onsideration will be general.22 Sin
e we agree that any parti
leof a level k − 1 is lo
ated in the 
enter of mass of the parti
les of level k that form it, in this group ofparti
les a �xation of all but one parti
le determins a 
oordinate of this one (relatively to their 
enterof mass). These parti
les whi
h 
oordinates 
an be arbitrary, are 
alled valuable. Let k = 0, 1, . . . , nenumerate the levels of hierar
hy. We denote by r̄k the initial segment of sequen
e r̄ of the length k,and by rk - k-th element of this sequen
e, that has the form of list rk = (r1k, r
2
k, . . . , r

sk

k ), where rj
k arethe relative 
oordinates of j-th valuable parti
le of a level k, sk is the total number of su
h parti
les; forexample, if any parti
le 
ontains exa
tly two parti
les of the next level, then sk = 2n−k−1. If the upperindi
es are not used we 
an assume for simpli
ity that rk is the single qubit - this simpli�es our notations.22The representation of wave fun
tions in the form (8) is mu
h more 
onvenient than in the traditional for physi
ists form

|Ψ(r̄)〉, be
ause the last form is ambiguous, it means two di�erent things: the wave fun
tion and its value in a 
on
retepoint r̄ (so that to tell apart these two senses physi
ists often write integrals with delta-fun
tions).15



Ea
h wave fun
tion of the form (8) 
an be represented as
∑

r1

(

λr̄1 |r1〉
⊗∑

r2

(

λr̄2 |r2〉
⊗

. . .
⊗∑

rn

λr̄n
|r̄n〉

)

. . .

) (9)For this it is su�
ient, for example, to take all λr̄j
equal to 1 for j = 1, 2, . . . , n− 1, and for j = n to setit equal to λr̄ from the formula (8).If we �x some value of j, the amplitude distribution λr̄j


an be treated as some wave fun
tion; weassume that it is normed. A

ordingly to our agreement it 
an be determined by some e�e
tive algorithm
fj , whi
h 
ode is denoted by [λ̄r̄j

], so that fj(r̄j) = λr̄j
. Let Kj denote the set of lists of the form r̄j , andlet Fj be su
h a fun
tion on Kj−1, that Fj(r̄j−1) = [fj ]. We will 
onsider su
h states only for whi
h allthe fun
tions Fj j = 1, 2, . . . , n 
an be 
omputed by some �nite and �xed set A of e�e
tive algorithms.Sin
e a �xation of all fun
tions Fj uniquelly determines a state, all su
h states will be determined by a�nite set of e�e
tive algorithms, where the length of 
odes of su
h states will be limited from above bysome linear fun
tion of n, e.g. of the number of parti
les in the 
onsidered system. We note that in viewof the last remark the states separated by (9) and your agreements represent the narrow sub
lass of allstates (with the agreement about amplitude quantum). But the 
omputations with the des
ribed 
lassof states does not require the immediate storage of amplitude quantum in the memory; we have to storethe 
odes of algorithms instead, that generate amplitude distributions - it makes possible to work withmu
h less amplitude quantum than is allowed by the memory.Several sub
lasses 
an be introdu
ed by the imposition of additional 
onditions. If all the fun
tions

Fj depend fa
tually not of the whole list r̄j−1, but of 
oordinates rj−p, rj−p+1, . . . , rj−1 only, we 
all su
hstates the states of depth p. The sub
lass of states of the depth 0 
onsists of non-entangleg states. Ifea
h distribution λr̄j

ontains only one nonzero element, we obtain the set of basi
 states.We denote by |Ψr̄k
〉 a wave fun
tion ∑

rk

λr̄k
|r̄k〉, whi
h obviously depends on a 
hoise of r̄k−1. It is awave fun
tion of the system of all parti
les of level k, that depends on a 
hoise of 
oordinates of parti
lesbelonging to the lower levels, enveloping parti
les of level k. We now treat this dependen
e in moredetails. Let A be Hermitian in the spa
e of states of a system Sk pari
les of level k. Its mean value isthus determined a

ordingly to the quantum rule

〈A〉Ψr̄k
= Tr (A|Ψr̄k

〉〈Ψr̄k
|). (10)In parti
ular we 
an �nd the mean value of every 
omponent of the system Sk, and the potential Vk(r),
reated by this system in a point r. Given an external potential V , we 
an �nd the potential V ′(r̄k−1) =

V + Vk(r), whi
h a
ts on a parti
le of level k − 1. If we are given initially eigenstates for parti
les oflevel n we 
an thus 
ompose the Hamiltonian for parti
les of level n − 1; then �nd its eigenstates andthus 
ompose the Hamiltonian for parti
les of level n− 2, et
., up to the biggest parti
les of level 0. Anabsolute 
oordinates of a level k 
an be obtained as a sum of sequentially nested parti
les up to the level
0. It turns out that a spatial �xation of parti
les of levels k − 1, k − 2, . . . , 0 determins an amplitudedistribution for level k, that is required in the de�nition.A step of unitary evolution 
an be thus realized for a state of hierar
hi
al system by some numeri
almethod, for example, by �nite di�eren
es. For parti
les belonging to the same tier we thus apply themethod of dire
t simulation. It is important that operations performed over amplitude distributions inthis modeling and the resulting distributions lie in the set A of 
hosen e�e
tive algorithms.If we limit the total number of points in the spa
e by a value L (or �x a spatial grain), the quantityof eigenfun
tions of every level and the maximal number of parti
les in ea
h set Sj , then the memoryrequired for the storage of any state of the form (9), will grow as a polynomial of the numberN of parti
lesof the biggest level (elementary parti
les) and the degree depends on L. The hierar
hi
al representationof wave fun
tions given by the formula (9), is not then equivalent to the many body Hilbert formalism,where the growth must be exponential. Newertheless the hierar
hi
al representation of many body states16



gives the prin
ipal possibility to s
ale the quantum simulation not only for the systems 
onsisting ofelementary parti
les (atoms, mole
ules), but also inside elementary parti
es.We now des
ribe how the de�ned hierar
hy is varying in the time.1.) Lowering of a parti
le to one step in the hierar
hy. We suppose that for the states of the form(9) the simulation of unitary evolution (with the mandatory redu
tions) leads to that a state of someparti
le of a level k in ea
h of fun
tions |Ψr̄k−1
〉 is separated as a tensor multiplier. We then de
lare thisparti
le to belong to the level k − 1 with the 
orresponding rebuilding of amplitude distributions. Thisparti
le will then intera
t with the other parti
les of the level k − 1 a

ordingly to the 
orrespondingHamiltonian.We thus 
an des
ribe the tearing o� ele
trones from a mole
ule resulting from the Coulumb attra
tionof a 
lose ion or an absorbed photon. Given initially two ele
trones in a Fo
k-Sleter state we 
onsider thesituation when the simulation of unitary dynami
s with redu
tions leads to the growth of the distan
ebetween their one parti
le wave fun
tions. The determinant then turns to one summand and we have thedes
ribed situation. The situation with photon absorbtion 
an be 
onsidered analogously. Here we musttreat the states of the form
∑

j

λj |Ψj , fj〉, (11)where fj ∈ { photon in state ψj , no photons} (see below).2.) Lifting of a parti
le a to one step in the hierar
hy. This pro
ess is reverse to the previous and it is
onne
ted with the 
reation of new entanglement between parti
les whi
h were not entangled before. Aparti
le a then is in
luded to the tier subordinate to one parti
le - b with whi
h a was in the same levelbefore. The 
riterion determining the moment for su
h a pro
edure is as follows. During the simulationof the dynami
s of system of two parti
les a and b as a system of two intera
ting parti
les its statebe
omes entangled within the pre
ision of simulation, and this entanglement does not dissappear afterfew steps. This 
riterion requires the dire
t many parti
le simulation. If we want to manage with oneparti
le simulation only we 
an use the di�erent 
riterion:K). In the simulaton of system 
onsisting of independent 
lassi
al parts a and b it 
omes in that a�xation of 
oordinates and impulse of one determins the 
oordinates and impulse of the other within thea

ura
y of simulation.This rebuilding of hierar
hy is the most nontrivial operation in the simulation, be
ause it establishsthe entanglement between parti
les whi
h were independent before. The 
hange of hierar
hy representsthe 
omputational tri
k be
ause the entanglement that arised initially in the immediate simulation ofmany body system (quantum or 
lassi
al) turns to the hierar
hi
al entanglement after the pla
ing ofinitial point of the new 
oordinate system to the 
enter of mass of a previously non- entangled system.Remark. We 
ould introdu
e the spe
ial pro
edure of measurement whi
h is performed in themoment when the 
arrier of wave fun
tion of some parti
le be
omes dis
onne
ted, e.g., 
omes apart toseveral 
omponents of 
onne
tivity D1, D2, . . . , Dk. The measurement then would be the proje
tion ofwave fun
tion to one of these areas a

ordingly to the Born rule. But su
h a pro
edure in 
ontrast to theredu
tion does not 
orrespond to any 
omputational prin
iple and 
annot be asso
iated with any realpro
ess; the value of su
h a pro
edure would be purely aestheti
, be
ause it preserves the 
onne
tivity ofthe wave fun
tion 
arrier (that has indire
t relation with the e
onomy of the 
omputational resour
es).For the disintegration to the di�erent 
onne
tivity 
omponents (whi
h 
an be far one from the other) thegeneral des
ription of a measurement pro
edure is appli
able. This des
ription is based on the redu
tiononly and does not need any additional suppositions. This is be
ause we do not introdu
e the spe
ialpro
edure of measurement.We then de�ne the division of the 
on�guration spa
e for parti
les in the hierar
hy, that is neededfor the numeri
al methods. If the points of the division are distributed uniformly it would result in a lot17



of redundant work, be
ause the majority of basi
 states would have amplitudes whi
h modules less than
ǫ and the 
orresponding summands will dissappear in the next redu
tion. In the area of big amplitudesthe points of division must be disposed more densely be
ause just these areas more in�uen
e on theevolution. In the passage from the 
onventional for analysis the dis
rete representation of 
ontinuousfun
tions through the division of an interval by points x1, x2, . . . , xk to the qubit representation (5) wemust 
hoose these points so that the impa
t of the parti
le in one of the intervals of division 
orrespondsto the basi
 state in the linear 
ombination. It 
an be rea
hed if we use a non-uniform distribution of thedivision points. How the density of the division points must depend on a wave fun
tion to minimize the
omputational resour
e required for the simulation of unitary evolution? If we start from the 
lassi
alurn model for the quantum probability (see below) we should dispose the points so that they 
orrespondto the elementary events. Namely, let ρ(x) be the density of division points for 
on�guration spa
e.If λ(x) is the wave fun
tion in its 
ontinuous representation the following 
ondition must be ful�lled:
ρ(x) = C |Ψ(x)|2 with some 
onstant C. It guarantees the 
onservation of the wave fun
tion norm duringthe simulation. This tri
k with the non-uniform density of division points gives the best a

ordan
e withthe pro
edure of state ve
tor redu
tion when we ignore the small amplitudes. The idea of non-uniformdensity of the division points 
an be generalized to the hierar
hi
al representation of a many parti
lesystem.For the simpli
ity we 
onsider the 
ase of two parti
les of the level 2 that form a parti
le of thelevel 1. (The generalization to the 
ase of many parti
les is straightforward.) The points of division of
on�guration spa
e for the 1 level parti
le are distributed a


ordingly to our agreement about the densityand their total number is [1/ǫ2]. If x is the point of division for the 1 level parti
le that 
orresponds to theamplitude λ, then the total number of division points for one parti
le of the level 2 is [λ

ǫ

]. The quantumevolution is simulated by the iteration of two steps: a) one step of the evolution of 2 level parti
les whenthe 1 level parti
le is �xed, and b) one step of the evolution of 1 level parti
le where the state of 2 levelparti
les is �xed (in its 
oordinate system). The simulation then requires the same total number of stepsas with the uniform distribution of the division points but in the areas of bigger module of amplitudethese points are distributed more densely that better 
orresponds to the ideology of simulation than theuniform distribution.For the des
ription of ensembles of identi
al parti
les of high levels of nesting (for example, ele
trons)the representation in terms of eigenstates of energy is mu
h more 
onvenient than the language of 
o-ordinates, be
ause su
h parti
les emit photons that 
hange their states. It does not 
hange the geherals
heme of hierar
hi
al des
ription, only eigenstates of the 
orresponding Hamiltomian are asso
iated withthe whole tier and by basi
 states |r̄〉 we mean not a spatial positions but eigenstates of Hamiltonians.For the determining of the absolute 
oordinates of parti
les belonging to high levels of nesting we must,of 
ourse, pass to the 
oordinate representations of wave fun
tions, though absolute 
oordinates 
an behardly needed for anything.The �nding of eigenstates requires the dire
t simulation that we will now 
onsider. The starting pointis that eigenstates Ψ satisfy the following equation
δ

δΨ
E(Ψ) = 0, E(Ψ) =

∫

Ψ(r)∗HΨ(r) dr (12)This is the equation in variations of the wave fun
tion Ψ is equivalent to the system of ordinary equationsof the form
∂

∂λj
E(Ψ) = 0 (13)for ea
h j, where the wave fun
tion Ψ is 
onsidered as the fun
tion of λj . Pra
ti
ally the system (13)
an be solved by the sequen
e of steps. On ea
h of them we 
hoose the dire
tion of the most in
reasingof the fun
tion E(Ψ). The realization of ea
h step requires the total number of operations proportionalto the total number M of division points of the 
ommon 
on�guration spa
e, where M = Nk, N is the18



total number of division points of one parti
le spa
e, k - the number of parti
les. The total number ofsteps has the order N 1
3 , that gives the total number of operations of the order Nk+ 1

3 . For a many bodysystem an initial wave fun
tion is typi
ally 
hosen in the form of a tensor produ
t of one parti
le wavefun
tions:
Ψ(r̄1, . . . , r̄k) = Ψi1(r̄1)Ψi2(r̄2) . . .Ψik

(r̄k). (14)The des
ribed method of the minimization of energy must be at �rst applied under the 
ondition thatthe general wave fun
tion has the form (14). It means that we vary fun
tions Ψij
, �nding the minimalenergy. As we �nd the set of one parti
le wave fun
tions that give the minimal energy, we turn to thequbit representation of wave fun
tion (e.g., to the form (9)), and then 
ontinue the energy minimizationmoving to the entangled states.The dire
t simulation for the parti
les of the same tier represents some di�
ulty if we 
annot introdu
ethe hierar
hi
al order on them, as in the 
ase of many ele
tron states in atoms or mole
ular stru
tures.The algorithmi
 realization of the dire
t method requires the extremely large resour
es 
onsumption23,hen
e we now des
ribe one tri
k that 
an valuably simplify the simulation.The idea of this tri
k is to a

ount in the minimization of energy not all variations of wave fun
tionsbut only su
h that 
orresponds to the basi
 states with the su�
iently large amplitudes. Here we willstore wave fun
tions in the form maximally 
lose to (14). We will deal with the representations of wavefun
tions in the form of formulas, and assume that the storage and the operation over these fun
tions areful�lled a

ordingly to su
h formulas. We aggree, that in tensor produ
ts the one parti
le wave fun
tionsare enumerated in the �xed order, and in the qubit representation of every one qubit wave fun
tion asa sum on all values of 
oordinates these values are 
hosen in the �xed order as well (for example, in thelexi
ographi
). We shall not separate the spin 
oordinates from the spatial 
oordinates. Given a fun
tion

Ψ(r1, r2, . . . rk), we 
all its symmetrization a fun
tion of the form a
∑

π
Ψ(rπ(1), rπ(2), . . . , rπ(k))(−1)σ(π),where the summing is spread on all permutations π, σ(π) denotes in the 
ase of fermions the parity ofpermitation π, and 1 in the 
ase of bosons. The stogare of a wave fun
tion in the form of tensor produ
t

|Ψ〉ind = |Ψ1(r̄1)〉
⊗

|Ψ2(r̄2)〉
⊗

. . .
⊗

|Ψk(r̄k)〉 (15)is mu
h more e�
ient than in the form ∑

ī

λij
|j〉, be
ause in the last 
ase the summing is spread on theexponential number of summands. After the symmetrization (15) we obtain the wave fun
tion in theform

1√
k
D(|Ψ1〉, |Ψ2〉 . . . , |Ψk〉; r̄1, r̄2, . . . , r̄k), (16)where D is the determinant or the permanent (dependingly of the type of symmetry of the system -fermioni
 or bosoni
) whi
h is built on the wave fun
tions and 
oordinates. We denote by Sym|Ψ〉 theresult symmetrization of a wave fun
tion |Ψ〉 of fermioni
 or bosoni
 type. The fun
tion (16) 
an berepresented as Sym(|Ψ〉ind). This symmetrization 
an be applied to any wave fun
tion, in parti
ularto those whi
h are represented in the qubit form, where it means the 
omputations of determinants orpermanents of the amplitudes λs

j , where s- is the number of parti
le, j - is the number of basi
 state.We 
onsider here only fermionil ensembles. Sin
e the 
omputation of determinants for given values of
oordinates has the polynomial 
omplexity of te total number of parti
les, the presen
e of symmetrizationin a simulation does not lead out from the framework of e�e
tive algorithms.The fun
tions of the form Sym(|Ψ1(r̄1)〉
⊗

|Ψ2(r̄2)〉
⊗

. . .
⊗

|Ψk(r̄k)〉) are 
alled the fun
tions of zerorange of entanglement. These fun
tions from the algebrai
 viewpoint are entangled be
ause they 
annotbe represented as tensor produ
ts. But the storage of su
h fun
tions does not require any substantialadditional memory in 
omparizon to the non-entangled fun
tions (15), justi�es these name.23Many dimensional grids of varying density 
an be easily built in the 
ase of not entangled states only. For the entan-glement of the general form the building of su
h grids is di�
ult.19



A representation of wave fun
tion of the form
|Ψcan〉 = Sym(

∑

j∈J

λj |Ψj〉) (17)is 
alled a 
anoni
al representation if the following 
onditions are satis�ed:
• All the states |Ψj〉 are k- parti
le mutually orthogonal normed states.
• Ea
h state |Ψj〉 has the representation of the form ⊗

h∈H(j) |Ψj,h〉, where for ea
h j ∈ J either
H(j) 
onsists of one element only and |Ψj,h〉 is a basi
 state of our system (ea
h parti
le in somepoint) of the form |r̄〉, or H(j) 
onsists of k elements h1(j), h2(j), . . . , hk(j) and ea
h |Ψj,h〉 is oneparti
le normed wave fun
tion of the form ∑

l

λj,h
l |l〉.The algorithmi
 approa
h imposes the polynomial restri
tion to the number of elements in the set J . Byvirtue of the �rst 
ondition of orthogonality for any spatial (and spin) 
on�guration |r̄〉 = |r1, r2, . . . , rk〉of the 
onsidered system if 〈r̄ | Ψcan〉 6= 0, then there is no more than one value of j, su
h that

〈r̄ | Ψcan〉 = λj λ
j,h1(j)
r1

λj,h2(j)
r2

. . . λj,hk(j)
rk

(18)We then 
an 
hoose su
h 
ombinations of values for j, and r1, r2, . . . , rk that the module of amplitude ofa basi
 state r̄ â |Ψcan〉 〈r̄ | Ψcan〉 is not less than the 
hosen for 
omputations value g of the amplitudequantum. The 
hoi
e of su
h a 
ombination 
an be done in the logarithmi
 time of 1/g independently of
k if the number of elements in J is �xed. Really, we have to sear
h all dire
tly written amplitudes in thestate (17) in des
ending order of their modules; the amplitide resulted from the multipli
ationb in (18)de
reases exponentially and we rea
h g in the logarithmi
 time. We thus 
an sear
h in the polynomialtime of 1/g all su�
iently large amplitudes in the 
anoni
al representation of state, despite of that thesimple expansion of tensor produ
t even with the �xed g gives the representation of the length growingexponentially with the number of division points in the 
on�guration spa
e.Let we are given a 
anoni
al representation of spa
e of a range d of the form (17). A 
anoni
al repre-sentation of a range d+ 1 for this state 
an be obtained as follows. We 
hoose some spatial 
on�guration
r01 , r

0
2 , . . . , r

0
k along the rule de�ned above so that the 
orresponding basi
 state is not a simple summandin (17). Then it 
orresponds to some value j. Let for ea
h s = 1, . . . k the fun
tion |Ψj,hs(j)〉 have theform |Ψ′

j,hs(j)
〉+λj,hs(j)

rs |r0s〉+ |Ψ′′
j,hs(j)

〉 where |Ψ′
j,hs(j)

〉 (and |Ψ′′
j,hs(j)

〉) - are the summands whi
h 
ontainall the pre
eding (all the subsequent) to r0s values of 
oordinates of one parti
le. The representation ofthe fun
tion |Ψcan〉 in the form of a state of range d + 1 is obtained if we repla
e in (17) the summand
|Ψj〉 by the expression
(

k
∑

s=1
λ

j,h1(j)

r0
1

λ
j,h2(j)

r0
2

. . . λ
j,hs−1(j)

r0
s−1

|r01 , r02 , . . . , r0s−1〉
⊗

(|Ψ′
j,hs(j)〉 + |Ψ′′

j,hs(j)
〉)⊗

k
⊗

b=s+1

|Ψj,hb(j)〉
)

+λ
j,h1(j)

r0
1

λ
j,h2(j)

r0
2

. . . λ
j,hk(j)

r0
k

|r01 , r02 , . . . , r0k〉.
(19)We thus 
onsider the same wave fun
tion in the di�erent forms. It follows from (19) that this repla
ementgives the 
anoni
al representation of it. Su
h values of j for whi
h H(j) 
onsists of one element are 
alledthe main values. A main value of j 
orresponds to 
ertain values of 
oordinates of all parti
les r̄(j).We 
an ful�ll the minimization of energy by the varying of amplitude 
orresponding to this value; thisminimization results in the 
hange of λj and the 
orresponding renormalization of the rest amplitudes

λj′ where j′ 6= j; here all wave fun
tions |Ψj′,hs(j′)〉 remain un
hanged. We start the pro
ess of energyminimization with the states of zero range. In ea
h step number d we have a state of range d, whi
h energyis minimized by the alternate �xation of all main values of j and varying of the 
orresponding amplitudes.20



After that we 
hoose the di�erent representation of this state of range d+1 for whi
h the minimization ofenergy by the help of new main value relults in the 
hange of state, et
. This pro
ess allows to minimizeenergy so that at ea
h step we use the most e
onomi
al representation of wave fun
tion. If a step ddoes not already give the de
reasing of energy in the passage to states of range d+ 1 we assume that aneigenstate is found for a given value of amplitude quantum. Let E1
d , E

2
d , . . . , E

fd

d be all energies obtainedby the sequential minimization up to a range d starting from a state of lo
al minimun of energy Ed′ ina range d′ < d, we 
all the values Ed′ − Ef
d energy defe
t. The values of energy defe
ts 
hara
terizethe in�uen
e of 
omplexity of entanglement to the energy of the 
orresponding states for a given type ofintera
tions.2.5 Dire
t simulation in the form of se
ondary quantizationThe dire
t appli
ation of the method des
ribed above is di�
ult due the huge dimensionality of Hamil-tonians in the 
oordinate form. This s
heme is mu
h easier to implement for the wave fun
tions rep-resented in the form of se
ondary quantization. We say that a parti
le with wave fun
tion Ψj belongsto j-th energy level. In this 
ase a fun
tion Sym(|Ψ1(r̄1)〉

⊗ |Ψ2(r̄2)〉
⊗

. . .
⊗ |Ψk(r̄k)〉 is denoted by

|n̄〉 = |n1, n2, . . . , nL〉, where nj equals to the quantity of su
h l, for whi
h il = j (population of j energylevel). Su
h fun
tions form the orthonormal basis of spa
e of states. The general form of wave fun
tionwill be
∑

n̄

λn̄|n̄〉. (20)A Hamiltonian in this spa
e has the form
H =

∑

k,l

vk,lc
+
k cl +

1

2

∑

k,l,m,n

vk,l,m,nc
+
l c

+
k cmcn (21)where operators of 
reation and annihilation of a parti
le in an an energy level j have the form

c+j |n1, n2, . . . , nj , . . .〉 = (−1)σj(n̄)(1 − nj)|n1, n2, . . . , nj + 1, . . .〉,
cj |n1, n2, . . . , nj, . . .〉 = (−1)σj(n̄)nj|n1, n2, . . . , nj − 1, . . .〉,

σj(n̄) = n1 + n2 + . . .+ nj−1,

(22)for fermions, and σj(n̄) = 1 for bosons, and matrix elements have the form
vk,l = 〈Ψk | p2

2m + V1 | Ψl〉
vk,l,m,n = 〈Ψl,Ψk | V2 | Ψm,Ψn〉and 
an be found by the integration on the spatial degrees of freedom and summing on spins by thestandart rules (here the 
onjugation of tensor produ
t 
hanges the order of its 
omponents, V1, V2 areone and two parti
le potential, p is the impulse operator.In this notations our pro
ess of energy minimization looks as follows. We start with some state |n̄〉,whi
h depends on a 
hoi
e of fun
tions Ψj , whi
h must be orthonormal. By small variations of eigenstates

Ψj we rea
h a lo
al minimum of energy of a state |n̄〉 for some 
hoi
e of these fun
tions Ψ0
1,Ψ

0
2, . . . ,Ψ

0
L.After that we �x this basis in the spa
e of o

upation numbers and begin the further minimization ofenergy passing to nontrivial linear 
ombinations of the form (20). At ea
h step d we have a fun
tion ofthe form |Ψd〉 =

∑

n̄
λd

n̄|n̄〉. For every n̄ in the order of de
reasing of their amplitude modules we ful�lthe minimization of energy along all dire
tions of the form |n̄〉 + λ|n̄′〉, for whi
h |n̄′〉 = c+k c
+
l cmcn|n̄〉 forsome 
ombinations k, l,m, n. The resulting state will be |Ψd+1〉. The iteration of su
h steps gives a lo
alminimum of energy, and 
orrespondingly, an eigenve
tor of the Hamiltonian (21). A value of de
reasingof energy in 
omparizon with the basi
 state is an energy defe
t.21



We show roughly what algorithm for a hydrogen mole
ule 
an be obtained from this approa
h. Thisis the system 
onsisting of two protons and two ele
trons that move in the alternating external ele
tro-magneti
 �eld. The detailed 
onsideration of this problem requires the a

ount of the �eld dynami
sthat obeys Maxwell equations. We will not 
onsider it in full generality and negle
t the deposit of spinsand ve
tor ele
tromagneti
 potential into energy. We thus 
onsider the Coulomb intera
tion only andspins are involved only through Pauli prin
iple. The distribution of parti
les to the levels depends onthe 
on�guration of a system and it 
an 
hange in time a

ordingly to our rules. For example, in therea
tion of joining of two hydrogen atoms to the mole
ule initially the third level parti
les are ele
tronsand protons, the se
ond level parti
les are the pairs proton + ele
tron, the �rst level parti
le is the ob-je
t 
onsisting of these two atoms e.g., the future mole
ule. Sin
e protons are mu
h more massive thanele
trons we 
an assume that at the begining protons are the parti
les of the se
ond level, and ele
tronsare the parti
les of the third level where ea
h of them belongs to the tier of its proton. In the stationarystate of hydrogen mole
ule the hierar
hy looks otherwise. Ele
trons will be the third level parti
les,the se
ond level parti
les will be: ea
h of the protons and the pair of ele
trons, the �rst level parti
le -the mole
ule itself. If we negle
t the photon emission the simulation of su
h a system looks as follows.For a given arbitrary but �xed position of protons we ful�l one step of �nite-di�eren
e method of theele
tron dynami
s simulation. We ful�l this step for ea
h position of protons where the division pointsare distributed a

ordingly to the rule formulated above. We then do one step of the proton dynami
ssimulation by �nite-di�eren
e method. This two step pro
edure is then iterated. Sin
e the proton partof the wave fun
tion will 
hange mu
h slower than the ele
tron part, we 
an ful�l many steps of ele
tronsimulation for a �xed proton position. Here the herar
hy 
an either remain un
hanged, or 
hange - de-pendingly of the initial 
onditions. In the �rst 
ase the simulation gives the endless 
omplex os
illationsof four parti
les.Now we will not negle
t the emission of photon, e.g., 
onsider the problem in the more generality. Fora separated hydrogen atom we assume that its proton is �xed and 
omsider the ele
tron dynami
s. Forbasi
 states Aj we take the energy ele
tron eigenstates and the spa
e-time photon states. For example,the pro
ess of emission of a photon by the ele
tron that is initially in state 2s will look as the sequen
eof states of the form
S1, S2, . . . , Sj , . . . , (23)where ea
h joint state Sj of the atom and photon has the form

Sj = 1√
j
(|Ψ2s〉

⊗ |φ0〉 +
j
∑

r=1
|Ψ1s〉

⊗ |ψr〉,
|ψr〉 = exp(iφr)Ω(c r∆t)

⊗

(|0〉 + |1〉)
(24)where |φ0〉 is the va
uum state, φr is the phase fa
tor, Ω(R) is the 
hara
teristi
 fun
tion of spheri
al layerof the radius R, c is the speed of light, and the last fa
tor 
orresponds to the polarization. The photonenergy is thus exa
tly determined and the time of emission is 
ompletely non-determined. Nevertheless,it follows from the representation (24) that the probability of emission 
onverges to 1 if the time goesto in�nity. Indeed, by virtue of the wave fun
tion redu
tion we have to 
hoose one summands from (24)with the equal probability. One step of ele
tron movement simulation 
orresponds to the numerous stepsof the photon simulation be
ause just the photons 
reate the potential determining the 
harged parti
ledynami
s. That is even for the small number of iteration of the �nite-di�eren
e s
heme for ele
trons jwill be su�
iently large for that we 
an assume that the emission has been happened and the aton is instate 1s. The system of two ele
trons in the �eld of two protons is 
onsidered analogously, so that we
on
lude that always the ground state of ele
trons must be 
onsidered if only there is no external �eldand the movement of protons is negligible.Considering the joining of two hydrogen atoms to the mole
ule we thus assume that the both ele
tronsare initially in state 1s. The 
hange of hierar
hy looks roughly as follows. When the protons 
lose in22



the ele
trons loose the rigid 
onstraint with their protons and lift in the hierar
hy to the level 2. Their
ommon state be
omes strongly entangled due to the symmetrization and their pair 
an be 
onsideredas the new parti
le of the level 2, where ele
trons themselves be
omes the parti
les of the level 3, that
ompletes the forming of new hierar
hy of the stationary hydrogen mole
ule state. We note that thishierar
hy is very 
onvenient for the �nding of ele
tron pair eigenstates: the initial point of the 
oordinatesystem is pla
ed to the middle of segment 
onne
ting protons. The time inversion gives the inverse pro
ess:the disso
iation of hydrogen mole
ule resulting from the photon adsorbtion. Our approa
h embra
es allknown types of movements in the hydrogen mole
ule in
luding its forming and de
omposition, os
illationsand rotations. The forms of spe
trum 
an be thus found that 
orresponds to all these types of movements.But our method also embra
es the movements of mole
ule that 
annot be des
ribed in terms of 
lassi
aldynami
s. These movements result from the entenglement between all these four parti
les. Algorithmi
approa
h is thus more general than analyti
.The des
ription of quasi-parti
les represents the spe
ial problem that arises in the simulation ofsystems similar to a 
rystal, that 
onsist of a big nimber of parti
les. We do not tou
h this problem here.2.6 E�e
ts following from the algorithmi
 pro
edure of redu
tionThe algorithmi
 redu
tion pro
edure of a wave fun
tion (in what follows - AR) is a nulling of the toosmall amplitudes. This pro
edure is prin
ipally di�erent from the 
onventional 
ollaps of a wave fun
tionin that AR gives the 
lassi
al urn s
heme and Born law of quantum probability, whereas the 
ollaps doesnot; thus the 
ollaps is in
luded to the quantum theory as an axiom. Born law 
an be treated as themain "e�e
t" following from AR. This "e�e
t" is not the single. The AR pro
edure gives immediately the
lassi
al des
ription of a dynami
s if the 
orresponding Lagranjian a
tion along the 
onsidered traje
toriesis large in 
omparizon with Plan
k 
onstant (it has been mentioned by Feynman in ([FH℄) without expli
itusing od AR pro
edure, see also Appendix 1 of this work). AR thus gives the automati
 passage fromquantum to 
lassi
al dynami
s so that it is not ne
essary to take 
are of it when programming. If we
onsider a parti
le in two 
lose potential holes with the high barrier then in the algorithmi
 approa
h notunneling happens be
ause it is blo
ked by AR, whereas in the 
onventional theory tunneling takes pla
efor any barrier. This interesting e�e
t of "blo
king" of the quantum properties must be ampli�ed in themany parti
le 
ase in the passage to entangled states whi
h we treat as the subordination of parti
lesto the same parti
le of a smaller level. Really, if two parti
les are not entangled then ea
h of them aredes
ribed by its state ve
tor of the form |Ψk〉 =
N
∑

j=0

µk
j |φk

j 〉, k = 1, 2. If they are entangled, its stateis 
ommon and has the form |Ψcom〉 =
N
∑

j,j′=0

λj,j′ |φ1
j 〉
⊗ |φ2

j′ 〉. Here for ea
h �xed of the se
ond parti
lestate j′ the ve
tor of state for the �rst parti
le will be de�ned with the resolution N times less than forindependent parti
les. This de
reasing of the resolution represents the "blo
king" of quantum states inentanglement. For example, it 
an lead to the impossibility of tunneling that is pe
uliar to independentparti
les, and as a 
orollary - to the stability of the many parti
le states that are de�ned by the 
lassi
almethod - as a minimal potential energy but not as a groundstate of the Hamiltonian. E.g., the situationsare possible when some parts of 
omplex quantum strongly entangled system 
an be better des
ribed bythe 
lassi
al means.2.7 Some remarksWe pro
eed with the general 
omments on the pra
ti
al realization of the method on the real 
omputersthat impose the more severe limitations on the 
omputational re
ourses than the abstra
t algorithms 
on-sidered above. The methods of �nite di�eren
es are applied here to one parti
le only. In the 
omputationof one step of the unitary evolution for a parti
le of level m we assume that all parti
les of the major23



levels are �xed in the spa
e, whereas the spatial positions of the minor parti
les subordinate by hierar
hyare averaged by the quantum law. In the mole
ular simulation we 
an treat the nu
lei of atoms, ele
tronsand photons as parti
les of the zero level, atoms as parti
les of the �rst level and mole
ules and ions asparti
les of the se
ond and the next levels. For the most 
ases we 
an limit our 
onsideration by the �rstthree levels of hierar
hy. As mentioned above, the states of ele
trons 
onsisting in the same tier must besymmetrized by the Fo
k-Slater method. One more assumption about the almost unitary segments ofevolution we 
an assume to simplify 
omputations. In many 
ases when the a

ura
y of the photon wavefun
tion des
ription 
an be negle
ted we 
an assume that ele
trons in the time of unitary evolution areeither in the states with 
ertain energy or instantly move from one of su
h states to another and emitor absorb the photon a

ordingly to the law of 
onservation of momentum24. The ele
trons thus 
antravel between the energy levels permanently only in the lifting or lowering in the hierar
hy or if they are
onsidered as not entangled parti
les. This assumption means that we negle
t the form of photon wavefun
tions. In all likelihood25 su
h a 
onsideration is su�
ient for the majority of mole
ular pro
esses,even for those whi
h are substantially 
onne
ted with the emitting and absorption of single photons.It is obvious that the 
omputations 
annot be performed in the real time mode of showing the "�lm".Hen
e even for isolated problems we should use the databases for ele
tron states for �xed nu
lei, thedatabases for photon radiation rate for all possible ele
tron energy levels and the databases for theproblems of simple dispersions (no more than 3 parti
les). These databases 
an be dynami
al e.g., they
ould be formed in 
ourse of one pro
ess simulation and then dis
arded. But there are some databaseswhi
h must be stored and gradually spe
i�ed. For example, the databases for the stationary positions ofnu
lei in mole
ules and 
rystals and the 
orresponding states of ele
trons whi
h form valen
e bonds andBrillion zones, and nu
lei in the superpositions of spatial states (protons in hydrogen bounds), intensityof emanation and absorption of photons of the di�erent impulses and polarizations for ele
trons andnu
lei transition between su
h states. Su
h databases 
an a

ount only a small number of 
lose 
hargedparti
les.In addition, the des
ription of the majority of movements will be fa
tually 
lassi
al (espe
ially it istrue for the massive parti
les as nu
lei); hen
e ele
tron states must be often treated as 
lassi
al potentialswhi
h determines the 
lassi
al intera
tions of nu
lei only, as in the Born-Oppenheimer approximation.It makes sense then to 
ompose the databases of 
lassi
al potentials 
reated by su
h ele
tron states(and, may be, the states of tunneling nu
lei). For the nu
lei 
onsisting in the stationary mole
ules these
lassi
al potentials have the form of elasti
 potential kx2, where x is the spatial 
oordinate k is the
onstant determined by the model of lo
al stru
ture; thus only su
h 
onstants k must be stored.3 Con
lusionWe outlined the general ideas of the algorithmi
 approa
h to physi
s that is based on the fundamentalnotion of an e�e
tive 
lassi
al algorithm. The key assumption of this approa
h is the possibility tosimulate a system of arbitrary 
omplexity on 
lassi
al 
omputers with the polynomial 
omputationalburden. This approa
h does not 
ontradi
t to anything established in experiments up to nowadays, butforbids the existen
e of a s
alable quantum 
omputer, whi
h is allowed in the 
onventional quantumphysi
s. We have des
ribed the approximate form of a 
lassi
al algorithm designed for the simulation ofsystems for whi
h quantum e�e
ts play an important role. This algorithm is based on the hierar
hi
alrepresentation of quantum states for a many parti
le system, when the whole tier of parti
les of the samelevel is in the entangled state and is treated as one parti
le of the next level. A unitary evolution of su
ha system is simulated by one parti
le quantum dynami
s only. Transitions of the individual parti
lesbetween the levels in this hierar
hy are admissible and it makes possible to simulate 
hemi
al rea
tions.24Of 
ourse, when 
omputing the ele
tron impulse the impulses of all enveloping parti
les must be taken into a

ount.25Though it is not exa
t fa
t. 24



The e�
ien
y of this algorithm is guaranteed by the pro
edure of redu
tion that eliminates all the statesin superpositions whi
h module of amplitude is less than some �xed value 
alled an amplitude quantum.The rules we have formulated for the simulation of quantum dynami
s exa
tly express the 
onventionalquantum me
hani
al des
ription through tensor produ
ts of Hilbert spa
es with only one restri
tion: wenull all too small amplitudes. In the framework of this limitation we a

ount all e�e
ts resulting fromquantum entanglement between all the parti
les in the 
onsidered system independently on their tiers.The division of the parti
les into tiers is only needed to e
onomize the 
omputational resour
es in thesimulation by the possible using of pe
uliar one parti
le tri
ks.We saw that the redu
tion pro
edure that is treated as the nulling of too small amplitudes is in prin
i-ple su�
ient to the simulation of de
oheren
e. This way makes possible to a

ount all elenemtary eventswhi
h probability is not less than 1
T , where T is the amount of the time we have at our disposal. Thisapproa
h to the de
oheren
e is very easy for programming and does not require any spe
ial des
ription ofthe environment besides the evident fa
t that the 
omputational resour
es 
an be distributed among thedi�erent parts of the physi
al spa
e. The redu
tion immediately gives the 
lassi
al urn interpretation ofthe quantum probability and Born rule for it that will be shown also in Appendix 1. At least the redu
-tion transfers the quantum des
ription of evolution to the 
lassi
al without any additional suppositionsthat will be demonstrated in Appendix 1.The algorithmi
 approa
h thus gives the uniform des
ription of a quantum dynami
s without itsdivision to the unitary dynami
s and measurements; this des
ription is also independent of the presen
eof an observer.The further analysis of an amplitude quantum is not ne
essary for the 
onstru
tion of the simulatingalgorithm. Nevertheless we give the more vivid interpretation of amplitude quanta through the Feynmanpath integrals in Appendix 1. The idea of one possible way of representation of pseudo-Eu
lidean metri
in spa
e-time is des
ribed in Appendix 2. We underline that our approa
h in not an interpretation ofquantum theory. It is rather the introdu
tory part for the instru
tion on its pra
ti
al implementation tothe 
omplex systems. Just as the parti
ular tri
ks des
ribed in the both Appendi
es 
annot be treated asthe des
ription of some me
hanisms; it is the 
omputational tri
ks only that are not the single possible.They tou
h two prin
iples: the probability interpretation of wave fun
tion and the 
onservation of thepseudo-Eu
lidean metri
 in the transition from one inertial frame to another. These two prin
iples 
annotbe redu
ed to more elementary things but they are known long ago in physi
s. It is shown how they
an be represented in the framework of algorithmi
 approa
h if we do not introdu
e it to the modelbeforehand.Referen
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ommuni
ationAppendix 1Amplitude quanta in Feynman path integralsThe s
heme of possible model for quantum evolutions shown above is based on the pro
edure ofredu
tion whi
h must be applied to ea
h quantum state. Just this pro
edure guarantees the limitation ofquantity of the summands in the notations of quantum states, and hen
e the e�e
tiveness of this algorithm.This pro
edure 
an be assumed un
onditionally in the algorithmi
 approa
h and just it fa
tually imposesa ban on the 
reation of a s
alable quantum 
omputer, whi
h is allowed in the 
onventional quantumphysi
s. Nevertheless we show that this pro
edure 
an be made more sensible. Really, we have tolimit somehow the minimal size of amplitudes of states in quantum superpositions, e.g., to introdu
e anamplitude quantum. We show the way whi
h looks the most physi
al and whi
h is based on Feynmanpath integrals. In addition, the des
ription of quantum evolutions based on amplitude quanta is 
lose tothe 
lassi
al and the transfer from the 
lassi
al des
ription to the quantum by this way looks very easy,whereas the invesre transfer is based on the redu
tion pro
edure only.Amplitude quanta were introdu
ed in the work [Oz2℄ on purpose to give a dire
t interpretation ofBorn's quantum formula for the probability in terms of a 
lassi
al urn s
heme, and this aim was rea
hed.In this work we modify the notion of amplitude quanta in order to obtain the better simulation ofquantum evolutions than the method of �nite di�eren
es. Parti
ularly, we require the easy transfer fromthe 
lassi
al des
ription of dynami
s to the quantum and vi
e versa that is important for example, for theproblems of mole
ular dynami
s. The following 
ondition is that the des
ription of quantum dynami
smust be independent of an observer, and the de
oheren
e (that is the permanent soft measurent ofquantum states) must be in-built in the model. Feynman path integrals (see. ([FH℄) is the form ofquantum formalism whi
h is the most appropriate for this aim. In this formalism the amplitude ofpassage of a parti
le from the point 1 to the point 2 is represented as the integral
K(2; 1) =

∫

exp

(

i

h
S[x]

)

Dx, S =

t1
∫

t0

L(x′t, x, t) dt (25)over all possible traje
tories x(t), that go from 1 = (t1, x1) to 2 = (t2, x2), where the Lagranjian L =
Ekin −Epot is the di�eren
e between the kineti
 and potential energies; for example in 
ase of a parti
lein s
alar potential Ekin = p2

2m for impulse p, Epot = V (x). The fun
tion K is 
alled a kernel, or Greenfun
tion (for the wave equation) and S is the ordinary 
lassi
al a
tion along the traje
tory x.Path integrals are 
onvenient for us be
ause they make possible to pass to the 
lassi
al des
riptionof dynami
s. The 
lassi
al equation for traje
tories has the form δS
δx = 0; e.g., the small variations oftraje
tory do not 
hange the a
tion. It gives the simple pra
ti
al rule for the passage from the 
lassi
aldes
ription to the quantum and vi
e versa. Let we use a method of �nite di�eren
es with the step ∆t forthe solution of 
lassi
al equations. We 
onsider the element of a
tion ∆S = L∆t, 
orresponding to thisstep. If ∆S ≫ h, then the 
lassi
al des
ription gives the right pi
ture; if ∆S ≈ h, we must pass to thequantum des
ription. The initial distribution of 
oordinates 
an be taken as gaussian, so that the wave27
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fun
tion in the initial instant has the form Ω(x̄) exp(i p̄
h x̄). And vi
e versa, in the quantum simulation thepassage to the 
lassi
al simulation must be ful�lled if ∆S be
omes more than Plan
k 
onstant h, be
ausetraje
tories far from the 
lassi
al give the deposits to the kernel that destru
tively interfere with ea
hother26. By virtue of our agreement to ful�l the redu
tion over all the states it leads to that when thea
tion is large enough all the paths with nonzero deposit be
ome 
lassi
al. If we obtain the kernel by theformula (25) then the wave fun
tion of our parti
le in a moment t2 is expressed through this fun
tion ina moment t1 by the formula

Ψ(t2, x2) =

∫

K(t2, x2; t1, x1)Ψ(t1, x1)dx1. (26)The parti
ular form of Lagranjian is not important for us, the more 
ompli
ated expressions are allowed,for example, it 
an depend on the se
ond derivative of x by time, - it requires only little extension ofthe internal memory of amplitude quanta. In the framework of Hilbert formalism for many parti
les theformulae (25) and (26) are true in the many parti
le 
ase as well, provided by a traje
tory we mean atraje
tory of the 
orrespondent many parti
le system. Now we turn ba
k to the one parti
le 
ase. Weadmit that the total number of su
h traje
tories is limited from the very beginning and the 
orrespondingparti
le is moving along ea
h of these traje
tories. These �
ti
ious parti
les are 
alled amplitude quanta(a.q.)27. We 
ould apply the 
ollision model for a.q. to guarantee the 
haoti
 
hara
ter of a.q. movement.Changing of the regime of 
ollision we 
ould try to e
onomize 
omputational re
ourses required in thesimulation. But in fa
t we need only to 
hange somehow tarje
tories from point to point 
haoti
ally, andfor this the 
ollisions are not needed.Bounded amplitude quantaWe now 
onsider a.q. in more details. An amplitude quantum is a point obje
t whi
h moves in threedimensional spa
e. In ea
h time instant (we assume that the time runs eaually in all the spa
e) a.q. αhas the dynami
al parameters: 
oordinates, speed, denoted by x(α), v(α), and spe
ial parameters aswhi
h we in this se
tion 
onsider an amplitude denoted by λ(α), (phase and mass 
an be used instead ofamplitude), and we 
all su
h a.q. bounded. In the next se
tion we will 
onsider free a.q. whose spe
ialparameter is a type whi
h takes 4 values.A.q. are denoted by small Greek letters α, β, γ, the dynami
al parameters of a.q. α are designedby x(α), v(α), and the spe
ial parameters by τ(α). At �rst we 
onsider the simplest version of a.q.where τ(α) = λ(α) is the amplitude asso
iated with α. We assume that set of values for 
oordinates
x of a.q. 
onsists of the nodes of grid with step ǫ that 
an in general depend on the 
ooredinate. Letthe 
oordinates of a real parti
le be measured with a

ura
y δ = rǫ, r integer28. One position of a realparti
le then 
orresponds to (δ/ǫ)3 positions of a.q. All these positions �ll the 
ube Cδ,ǫ

l,n,m, whi
h 
onsistsof points of the form lδ + ǫj,mδ + ǫk, n+ ǫs, where j, k, s ∈ {0, 1, . . . , r − 1}. Hen
e, given the positionsof all a.q. the amplitude of that the real parti
le is in a 
ube Cδ,ǫ
l,n,m is

∑

α: x(α)∈Cδ,ǫ

l,n,m

λ(α). (27)We denote by Kǫ the set of all a.q. in the 
onsidered area with the a

ount of their 
oordinates andspeeds determined with the a

ura
y ǫ, and their spe
ial parameters in time instant t, where the lowestindex will be often omitted.26The element of a
tion depends on the value ∆t, whi
h is not arbitrary. It 
annot be very big be
ause we then would nothave the right method of �nite di�eren
es. It imposes the restri
tions to the area of appli
ability of the 
lassi
al me
hani
s.But ∆t 
annot be made arbitrary small as well be
ause we then risk not to �nish the quantum simulation at all.27This de�nition makes possible to simulate the dynami
s numeri
ally but yet does not give the urn model of probabilities;to obtain su
h a model we must further split these a.q. to the more elementary a.q. (see below).28It is not 
onvenient to assume that always δ = ǫ be
ause a wave fun
tion would then have a very dis
ontinuous form.28



If we �xe a value of δ, we 
an obtain trough this formula the 
orresponding amplitude distribution,e.g., the wave fun
tion whi
h is denoted by |ΨKǫ,δ〉. The area of spa
e where the density of a.q. is notvanishing is 
alled the a.q. bubble 
orresponding to the 
onsidered real parti
le. A.q. are thus treatedas identi
al 
opies of the real parti
le; these 
opies di�er only in their 
oordinates and speeds.The �rst step is to establish how a.q. speeds and amplitudes must be transformed in the 
ollisionsa.q. (or the 
ollisions with nodes of spatial grid) for that fro all t |ΨK(t)ǫ,δ〉 is a solution of Shoedingerequation within C(M)tδ3 (M is the total number of a.q.), or in other words, for that in 
ase of steadyHamiltonian with this a

ura
y the following equation is satis�ed
|ΨK(t)ǫ,δ〉 ≈ exp

(

− i

h
Ht

)

, (28)and in 
ase of time dependent Hamiltonian his equation is satis�ed again but in sense of 
hronolo
hrono-logi
al exponential.Transformations of a.q. parameters in a.q.
ollisions (or 
ollisions with nodes of grid) are representedin the form of rea
tions
v̄1, x̄1, λ1, ∆t1; v̄2, x̄2, λ2 −→ v̄′1, x̄

′
1, λ

′
1; v̄′2, x̄

′
2, λ

′
2,where ∆t1, ∆t2 is the time past from the previous 
ollision of the �rst and se
ond a.q. In view of formula(27) the main role in the detremining of a quantum state play the numbers λ(α). We determin thetransformation of these numbers in 
ollisions as follows

λ′j = λj · e
i
h
∆Sj , j = 1, 2, (29)where

∆Sj = Lj∆tj , Lj = Ekin − Epot (30)is the Lagranjian of j-th a.q. 
omputed in the point lying in the middle of the way from the previous
ollision. New speeds 
an be obtained from the 
ondition that all the 
ollisions are elasti
. Here thedi�erent variants are possible, for example we 
ould assume that if amplitudes λj interfere 
onstru
tivelythe 
ollision is less elasti
 and more similar to adhesion, if the amplitudes interfere destru
tively the
ollision is 
lose to elasti
. These tri
ks 
an e
onomize the 
omputational resour
es. In fa
t the simplestway is to assume that the speeds of all a.q. after 
ollisions are distribured randomly and uniformlyindependent of the previous speeds of the 
olliding a.q. We then sum the numbers λ(α) for all a.q. α,
ontaining in the 
ube Cδ,ǫ
l,n,m in time instant t. The obtained value of the fun
tion |ΨKǫ,δ〉 is the requiredapproximation of the real wave fun
tion of 
onsidered parti
le provided the traje
tories of all a.q. aredistributed randomly and uniformly among �nal points for all time instants. Really, in this 
ase the
omputation of kernel by formula (25) 
an be approximately represented as the summing of numbers

λ(α) over all a.q. α 
ontained in the 
ube 
orresponding to the point 2 provided all initial a.q. were inthe 
ube 
orresponding to the point 1 and the sum of all λ(α) for a.q. in the initial instant is equals1. Our pro
edure of �nding |ΨK(t2)ǫ,δ〉 is then an approximation of the formula (26), e.g. it gives theapproximation of wave fun
tion in the moment t2 provided |ΨK(t1)ǫ,δ〉 is an approximation of it in theinstant t1.The formula (27) is then the dis
rete analog of Feynman path integral (25). The a

ura
y of thisapproximation is the more the less numbers |λ(α)| are. If we assume that the amplitude is grained, e.g.that there exists the amplitude quantum g, then the maximal a

ura
y is rea
hed when |λ(α)| = g. Thissituation is 
onsidered in the next se
tion.The numeri
al experiments show that in most 
ases the 
ollision model gives no e
onomy and evenslow down the simulation. The reasons for the 
ollision model for a.q. are as follows. We 
onsider thesystem of parti
les moving 
haoti
ally so that the single potential is the potential of 
ollisions with the29



other parti
les29. If the mean tra
k length of parti
les is large in 
omparizon with their size and its totalnumber is large then su
h a system 
an be treated as a Marko� pro
ess, namely as a model of Brownianmotion (see. ([Hi℄))30. Let u(x, t) be the density of parti
les in point x in instant t, then the densitysatis�es the equation of heat 
ondu
tivity31.
ut =

1

2
Cuxx, (31)where C is a 
onstant, and its solution for u(x, 0) = δ(x− x0) has the form of Gauss 
urve

u =
1√

2πCt
exp

(

−x− x0

2Ct

)

. (32)On the other hand, let us 
onsider the quantum evolution for a free one dimensional parti
le whi
h is atrest initially and has the Gauss amplitude distribution proportional to exp
(

−α
2 x

2
). If we �nd its kernelby the formula (25) then we obtain (see ([FH℄) for the details):

K(x2, t2, x1, t1) =

(

2π ih(t2 − t1)

m

)−1/2

exp

(

im(x2 − x1)
2

2h(t2 − t1)

)

. (33)substituting it to the formula (26) and 
al
ulating the wave fun
tion of free parti
le we 
an �nd thedensity of probability to �nd this parti
le in a point x in an instant t it will be proportional to
exp

(

−αx2 1

1 + α2h2t2

m2

)

. (34)Comparing formulas (34) and (32) we 
on
lude that all densities have Gauss form but the density ofBrownian parti
les spreads faster in small times than the bubble of a.q. for free parti
le. Really, if theboth densities are equal initially then for small t the 
oe�
ient of the exponent for Brownian parti
leshas the form 1 − At whereas for a.q. it has the form 1 − Bt2 with positive A and B. It would seemthat it testi�es against Brownian model for traje
tories of a.q. But this drawba
k 
an be 
orre
ted. Thepoint is that in 
ourse of rea
tions between a.q. the permanent redistribution of a.q. will go betweenthe di�erent areas of simulated spa
e. If an amplitude quantum did not 
ollide for a long time we agreeto redistribute its amplitude among the other a.q. proportionally their own amplitudes32 (the analogousa
tion takes pla
e in 
ase of free a.q.). It makes possible to prevent too fast spread of a.q. bubble. Thesimilar pro
edure is ne
essary for the des
ription of ele
tromagneti
 �eld where photons are emitted bythe 
harged parti
les. Imagine that the a.q. bubble has the shape of sphere whi
h radius varies in time:
{r : |r| < R(t)}, where the redistribution and rea
tions go in the spheri
al area on the border of thesphere {r : R(t)− ǫ < |r| < R(t)}, where ǫ > 0 is su�
iently small and no rea
tions between a.q. happeninside the area {r : |r| < R(t) − ǫ}. What would happen with a.q. density in su
h a redistribution? The density on the 
onsidered narrow border will 
orrespond to the wave fun
tion of the parti
le.Sin
e this density has Gauss form everywhere, it will be equal to |Φ(t)|2 inside the bubble despite ofthat the rea
tions and redistributions go on the border only. The 
ollision dymani
s thus guarantees the29Stri
tly speaking it is yet not a Brownian motion. This motion is obtained if we 
onsider 
ollisions of a.q. with lesssized parti
les that makes the traje
tories of a.q. absolutely 
haoti
al; it is not signi�
ant for our purposes.30Bashelier tried to investigate this model (about 1900), but the equation for the density of parti
les in Brownian motionwas obtained by Einstein (1905); further su
h pro
esses were treated by Wiener (1923-38) and Levi (1937-40).31Really, let φ(y, t) be the fra
tion of partoi
les whi
h shifted in a time t from x to x + y. We assume that it has thedispersion Ct, and symmetry. From the de�nition of φ we then have u(x, t + t1) =

∫

R
u(x − y, t)φ(t1, y)dy and now it issu�
ient to expand u to the row of degrees of t1 and apply the both assumptions to obtain the equation of heat 
ondu
tivity.32We 
an eliminate su
h a quantum and 
reate the new one with the same speed and 
oordinates 
orresponding to theamplitude distribution. 30



required a.q. density almost without the rea
tions and redistributions - they are needed on the borderof the bubble only. The same reasoning are true for a free parti
le with the nonzero mean impulse. Thisqualitative reasonings show that the 
ollision model is in prin
iple good for Feynman traje
tories at leastfor free parti
les, be
ause this model maintains the right form of density itself and it 
ould proposedlysave the 
omputational resour
es 
omparatively with the sea
h of traje
tories by various methods likeMonte-Karlo. Our reasonings are approximate be
ause we a

ount a.q. only quantitatively, whereas thewave fun
tion is obtained from a.q. through the formula (27). But in 
ase of free a.q. their quantitativedensity will better 
orrespond to the wave fun
tion that makes our reasonings about the 
ollisions moresensible. We note that in a.q. model we 
an assume that all modules of amplitude parts λα of a.q. areequal and they di�ers in phases only that makes interferen
e pi
ture after the summing.Simulation with a.q.A.q. model is based on the a.q. dynami
s, their redistribution and the 
omputation of the wavefun
tion. We des
ribe these steps sequentially.At �rst we make one important remark. We have assumed to divide the model into two parts: the�rst is a

essible to users and the se
ond a

essible to the administrator only. For example, we denotethe user (physi
al) time by t, and the simulation time (the time of administrator, or 
omputer time) by
τ . It 
an be understood as if a user observes the "�lm" that is shown to him by the administrator andin this "�lm" the time �ies a

ordingly to the s
ale t. But the 
reation of this "�lm" requires the othertime; and just this time whi
h has sense for the administrator only and whi
h is equal to the quantity ofsteps in the simulating algorithm we denote by τ . The "�lm" is intera
tive and a user 
an interfere in it,the time s
ale τ will be then torn and the simulation must be started anew. The part of model a

essibleto a user must 
orrespond to the real observable world and we shall 
onsider it in this se
tion. The mainnotion here is the spa
e. The spa
e must be represented as the three dimensional grid with the small step
∆x where all dire
tions are equivalent; we thus admit only su
h spatial positions that 
oinside with thenodes of this grid. The movement of poinwise parti
le is then represented as sequential jumps from onenode to the neighboring. We do not admit the skip over several nodes be
ause it would make impossibleto dete
t a parti
le in the intermediate positions 33. We then obtain that the time of simulation ∆τwill be proportional to the distan
e overpassed by a parti
le in the physi
al time ∆t. That is the samephysi
al time frame ∆t requires the di�erent 
osts of 
omputer time ∆τ , that is proportional to the speedof parti
le34. Imagine that the spa
e is potentially in�nite: we are always able to assemble the new nodesto the grid. For the simulation of a parti
le moving with the speed v in the �xed time frame t it is thusrequired the simulation time τ proportional to v. It means that we 
annot simulate arbitrary speeds. Thephysi
al speeds a

essible to the simulation must be limited by the value proportional to the maximaladmissible time of waiting of the "�lm" τmax (and of 
ourse to the frequen
y of the simulating pro
essor).Coordinate and impulse representation of wave fun
tion in terms of a.q.We 
onsider the passage to impulse representation of wave fun
tion in therms of a.q. Let we are givena reservoir with a set K of a.q. su
h that the 
orresponding wave fun
tion of parti
le |ΨKǫ,δ〉 is 
omputedby the formula (27). We suppose that

• The value ǫ is so small that there are a lot of small 
ubes of the size ǫ, that 
ompose the 
onne
tedmassive and for whi
h the values of wave fun
tion found by the formula (27) are 
lose.33There is one more reason against su
h skips over nodes. If the speed is high and the traje
tory is 
lose to some singularpoint where the potential 
onverges to in�nity then in 
ase of su
h skips the movement of parti
le would depend not on itsinitial position only, but on the initial time instant that is una

eptable.34We do not 
onsider relativisti
 e�e
ts here. 31



• Due to the 
haoti
 
hara
ter of 
ollisions in the 
hosen model we 
an assume that the a.q. impulsesare distributed by the Gauss law inside of ea
h small 
ube.We 
hoose an arbitrary value of impulse of the parti
le: k0, and show how to �nd the value of wavefun
tion of a given state |ΨKǫ,δ〉 in the impulse representation. The 
onventional way is ti apply Fouriertransform:
Ψ(k)〉 = A

∫

R

Ψ(r)e−irkdr. (35)Sin
e ea
h a.q. has not only the 
oordinates but also the speed, e.g., impulse, we 
an introdu
e the newamplitudes µ by the phase shift of amplitude parts of the quanta:
µα = λαe

−irαkα . (36)Substituting into (42) the expression for the wave fun
tion from (27) and using (36) we obtain
Ψ(k0)〉 = A

∑

α

µαe
irα(kα−k0). (37)Due to our assumption about the distribution of a.q. impulses we obtain that in this sum all the summands
orresponding to su
h α that |kα − k0| > ǫ for su�
iently small ǫ give the negligible deposit and we 
anwrite the approximate equation

Ψ(k0) ≈
∑

α: |kα−k0|<ǫ

µα. (38)It means that it is easy to pass from the set K of a.q. to the 
oordinate representation of wave fun
tionby (35) as well as to its impulse representation by (38); in the both 
ases this is the simple summing ofa.q. of the spe
ial form. The single a
tion we need to ful�l to obtain the impulse representation is thephase shift (36) (for the symmetry we 
ould in
lude the half of this shift to the a.q. type the 
omplexityof 
omputation of the 
oordinate and impulse representations will be then the same.Amplitude quantum representation of many body systemsThe passage to the system of many parti
les in the amplitude quanta representation is natural. Let
S1, . . . , Sk be the parti
les in the same tier (usually k = 2). We assume that some lists of the form

α1, . . . αk (39)a.q. of these parti
les form an obje
t 
alled amplitude quantum of the whole system. A traje
tory forsu
h an a.q. is then de�ned naturally; 
ollisions are de�ned as the events when these 
omplex obje
tso

ur in some area of the 
on�guration spa
e, et
. The remark about the density of the division pointsremain valid for the many parti
le 
ase as well.For su
h 
omplex a.q. the rule of transformation of amplitude parts is de�ned again a

ordingly to(29), where the a
tion along a given path of su
h a quantum is de�ned as usual taking into a

ount thekineti
 energy of all its 
omponents and its potential energy. If the total number of a.q. is large thismodel gives the same dynami
s as Shroedinger equation for many parti
les.Let us 
onsider how Born rule 
an be derived from the a.q. approa
h. Suppose, for example, that wemeasure the spatial position of one ele
tron. It means that the 
onta
t between this ele
tron and a manyparti
le system takes pla
e when the 
omplex a.q. of the form (39) arise. For the distin
tness let a1denote an ele
ton a.q., and the other elements of the list denote a.q. of parti
les 
ontained in the measingdevi
e (in
luding photons) so that there su
h parti
les among them whi
h point to the measured positionof the ele
tron - denote them by a2, . . . , as, s < k. As usual we assume that the modules of amplitude32



parts of all 
omplex a.q. are approximately equal and are 
lose to the value of amplitude quantum ǫthat is essentially less than amplitudes of a separate ele
tron. The own evolution of the ele
tron 
anbe then negle
ted be
ause the measurement of its 
oordinates presumes very intensive intera
tion withthe measuring devi
e; and we must simulate the evolution of the 
omplex system ele
tron + measuringdevi
e. Let we be interested in the hit of ele
tron to some volume ∆V with the 
oordinates of 
entrum
x. Among all 
omplex a.q. there are su
h for whi
h the position of ele
tron a.q. a1 is in ∆V . Their totalnumber l, of 
ourse, does not 
onne
ted with any amplitude be
ause as+1, . . . , ak take arbitrary values.But due to the huge total number l of 
omplex a.q. and that their module of amplitudes are 
lose to theminimal value, l must be proportional to |Ψ(x)|2, be
ause the simulated evolution is unitary35. It meansthat if we 
hoose arbitrarily a 
omplex a.q. of the system ele
tron + measuring devi
e, the probability toobtain the position of measuring devi
e 
orresponding to the target ele
tron position will be proportionalto |Ψ(x)|2, with the fa
tor independent of x. This is the 
lassi
al urn s
heme giving Born rule for thequantum probability.In the framework of a.q. method it is not easy to represent a measurement of many parti
le systema

ordingly to the Hilbert formalism pi
ture, e.g. in the form of expansion of the unit operator to thesum of mutually orthogonal proje
tions36. It is easy to des
ribe a measurement of one parti
le in anensemble - it was done above. Su
h a measurement gives the information about the whole ensemble onlyif the parti
les strongly intera
t. For example, if we 
onsider a measurement of position of atomi
 nu
leusthen the a.q. of nu
leus disposed far from the �rst 
ollision of a.q. of the same type in the measurement.It leads to the fast disappearan
e of a.q. of ele
trons disposed near disappeared nu
lear a.q. that is wehave the e�e
t similar to the measurement of a state of the form |00 . . .〉+λ1|11 . . . 1〉+λ2|22 . . .2〉+ . . ..We 
an hope to get the des
ription of EPR pairs whi
h demonstrate the violation of Bell inequalities,namely - the fast 
hange of the apparatus measuring one parti
le su
h that the light 
annot get theother parti
le before the instant of measurement. For this we must use a.q. 
orresponding the di�erentbasises of measurement; but anyway, it is ne
essary to apply administrative signals whi
h spread in thesimulating system media and whi
h 
annot lead to the informational ex
hange between users.The interesting question: how to 
hoose 
omponents of 
omplex amplitude quanta of the form (39)from one parti
le a.q. ? When a many body system is formed by tou
hing of one parti
le bubbles, we
an assume that su
h 
omplex a.q. are formed in the sequentional 
ollisions of one parti
le a.q., if theinformation about these 
ollisions is somehow stored. To spe
ify the regime of forming and disso
iationof many parti
le a.q. we 
an use geneti
 algorithms.Permanent measurement as norming administrative signalsThe single not lo
al pro
edure in the a.q. formalism is the annihilation and 
reation of a.q. that isintrodu
ed for the preserving of its total number. This pro
edure is similar to the norming of a wavefun
tion and it requires the signals whi
h spread faster then a.q. 
an move37; these signals are 
allednorming. Norming signals 
an 
arry no information forethought by a user A to a user B. But thesesignals in the model are ne
essary for the explanation of quantum nonlo
ality established in the series ofexperiments38. In terms of "�lms" the norming signals mean that su
h a �lm is prepared beforehand andits parts are demonstrated to a user in turn as they are ready. Here a user 
annot make over already doneparts but 
an order the following parts for a future. This preprogramming makes possible the simulationof quantum non-lo
ality by a 
lassi
al 
omputational network whi
h we 
alled the administrative system.If only a user has rights to look inside it he would observe the impossible thing: signals travelling instantly.The absen
e of su
h rights of a user just means the limitation on the speed of information transfer. This35It is rea
hed after the numerous redistributions of a.q. in the many step simulation of quantum evolution.36We note that it is not easier to realize experimentally su
h an abstra
t measurement for many bodies.37We 
ould say: they spread in the other media whi
h is a

essible to the administrator but not to users.38For example, see ([As℄). 33



limitation 
an be reformulated in terms of a "free will" as above. It has the fundamental nature and is
onne
ted with the prevention of logi
al paradoxes.One aim of the intordu
tion of a.q. is to �nd a �rst prin
iple des
ription of the 
urrent quantum statein 
ourse of its evolution that is impossible with the 
onventional Hilbert formalism. The 
hemi
al methodof a.q. makes it possible. A bubble �lled with a.q. is the basi
 model of one parti
le quantum states. Todes
ribe its dynami
s we must know what is happening with the separate a.q. Our 
onsideration here donot depend on what form of a.q. we use: free or bound. We have the sour
e of a.q. - their 
ollisions and itis needed only to des
ribe the pro
edure of elimination of a.q. that will guarantee the stability of its totalnumber. We agree to eliminate ea
h a.q. whi
h did not 
ollide in 
ourse of si�
iently large time t > t0and to eliminate the 
olliding a.q. if they are mutually antitheti
: xs and x−s, x ∈ {α, β} (r-redu
tion).This method is appropriate for one free partiu
le moving in the spa
e; but yet for a parti
le in a potentialrelief this method 
an lead to too fast de
reasing of the a.q. total number due to their spreading on thelarge area. To prevent this undesurable pro
ess we will use a.q. re
y
ling that is equivalent to the normingof wave fun
tion: the dissappearing a.q. will be redistributed to the other spatial positions a

ordinglyto the amplitude distribution found by the formula (27). An eliminated quantum must transform to its
opy with the same impulse. For free a.q we 
ould guarantee the determini
ity by some simple tri
kthat is not ne
essary. This pro
edure is similar to the norming of 
urrent state whi
h is the subje
t ofpermanent soft measurements39.We have already mentioned that it is not ne
essary to introdu
e the spe
ial pro
edure of measurementto the algorithmi
 formalism. Newertheless, this tri
k 
an be not useless to speed up the preparation ofthe "�lm". Su
h a measurement happens in the moment of break-up of the bubble to the two dis
onne
tedparts40. In this 
ase as a new bubble we take a 
omponent of 
onne
tivity in whi
h the �rst 
ollision ofa.q. of the same type has happened; the rest a.q. are redistributed on the new bubble a

ordingly to thepro
edure des
ribed above41 .For the realization of permanent measurements it is needed to have norming signals with the instan-taneous a

ess to all a.q. of the 
onsidered parti
le. These signals have no physi
al sense for a userbe
ause it 
annon 
arry any information put-up by a user. In 
ontrast to a.q. that are the 
opies of onephysi
al parti
le and whi
h speed 
annot ex
eed the speed of light, the signals spread instantly. It makespossible to represent not only the movement of parti
les in the �eld but also the behavior of the �elditself, for example the experiments on the dete
tion of EPR pair (see ([As℄), that 
ould not be visualizedwithout administrative signals. These signals are internal pro
esses of the simulating system and they
annot 
arry any user's information thus it is 
ompatible with the fundamental relativisti
 limitation tothe speed f information transmission. It 
an be explained otherwise. What is 
alled a "free will" existsamong the users only, not in the world of a.q. and system signals, be
ause in that world all in
ludingthe results of observations are determined. Hen
e the signals whi
h determin the shape of a.q. bubble
an travel with arbitrary speed without violation of the relativisti
 ban on the superluminal transfer ofinformation - there is no information without a "free will". Users 
an get an information about a.q.only through the measurements 
onne
ted with a.q. 
ollisions as was des
ribed above. This method ofinformational ex
hange between users of our imaginary system is authorized and it does not allow totransmit an information faster than a.q. move42. This approa
h 
an be applied for photons as well if39If the dynami
s of a.q. leads to the situation when there is no a.q. in some area then from the Hilbert spa
es viewpointit is equivalent to the soft measurement of wave fun
tin (see ([Me℄))40The re
ognition of this moment 
an be based on the permanent transmission of the spe
ial value of 
onne
tivity fromane quanta to the other in its 
ollisions. This value 
hanges su
h that a 
omponent of 
onne
tivity is 
hara
terized by thesame value of 
onne
tivity of all a.q. whi
h belong to this 
omponent. In parti
ular the 
onne
tivity means the same valueof 
onne
tivity of all a.q. 
orresponding to this parti
le.41The slightly di�erent method is possible when a part B1 of the bubble whi
h has the larger surfa
e loses a.q. fasterbe
ause they �y away and these a.q. arise anew in the other area B2, that leads to the disappearan
e of B1; or a 
ombinationof su
h tri
ks.42But if we imagine that a user has somehow learnt the positions and speeds of all a.q. in the whole spa
e and he has aninstantly working 
omputer, then he 
ould transmit his messages with arbitrary speed.34



we take into a

ount the features of ele
tromagneti
 �eld. We note that the des
ription of the relativismitself in terms of a.q. represents the separate task whi
h lies beyond the framework of this paper.Summing up, we note that the simulating pro
ess for many body system 
onsists of two types of a.q.transformations
• lo
al rea
tions of 
hemi
al type, and
• nonlo
al "norming" signals.Free amplitude quantaThe simulation with bound a.q. is based on the algebrai
 operations over binary notations of ampli-tudes that 
annot give a 
lassi
al urn model for a quantum probability. Here we show how su
h a model
an be obtained if we split bound a.q. to ithe small summands 
alled free a.q. In terms of free a.q. we
an give the 
lassi
al interpretation of a quantum probability without usage of algebrai
 operations andbasing on the rea
tions of 
hemi
al type between a.q. only. Free a.q. express the grain of amplitudeswhereas bound a.q. express 
ompletely the grain of spa
e only. Using free a.q. we hope to obtain su
he�e
ts as 
ole
tive ex
itations in the simulation of many body systems, that 
annot be obtained if we
onsider amplitudes as 
ontinuous. Free a.q. more 
orrespond to the ideology of analogous simulation,not of the digital one. This is why bound a.q. are more 
onvenient for pra
ti
al simulation. Free a.q.makes possible to redu
e all des
ription of quantum dynami
s to the rea
tions of 
hemi
al type; this iswhy we devote one se
tion to free a.q.Given an amplitude quantum q we denote its type by τ(q). Ea
h type has the form

xs
r, (40)where x ∈ {α, β} determins whi
h part of amplitude is represented by this quantum: real (α) or imaginary(β), s ∈ {+,−} determins the sign of this quantum and r is the list of the form r = j r1 . . . rk. Herethe �rst element j = 0, 1, . . . , N − 1 determins the basi
 state |Ψj〉 whi
h this amplitude 
orresponds toand it varies a

ordingly to the 
oordinate of this quantum (see below) and the rest elements 
ontain theauxiliary options of the quantum. We assume the 
onventional rules of handling with signs. We denoteby [xs

j ]B the total number of a.q. of the form (40) in the bubble B, where in the lower index the auxiliaryoptions and B will be often omitted. We put [xj ] = [x+
j ] − [x−j ].The result of all possible annihilations of a.q. of the types xr , x

−1
r is 
alled r- redu
tion. We de�nereal nonnegative numbers

pj =
[αj ]

2 + [βj ]
2

∑

x∈A,0≤k≤N−1

[xk]2
. (41)Su
h a number pj 
an be 
onsidered as a probability to obtain a real state of the form (xs

j , x
s
j) for some

x ∈ A, s ∈ {+,−} as a result of all sequential j- redu
tions in the bubble (j = 0, 1, . . . , N − 1), if a realstate is treated as a result of 
ollision of a.q. of the same type43.For a given state
|Ψ〉 =

N−1
∑

j=0

λj |Ψj〉 (42)43Of 
ourse, this interpretation of Born rule is mu
h worse than that we have done above, be
ause it requires the "
oupling"of a.q. of the same type that is an arti�
ial 
onstru
tion; newertheless it fully answer to the spirit of 
hemi
al type rea
tionsbetween a.q. 35



of the 
onsidered system we denote Re λj , Im λj by αj,Ψ, βj,Ψ where the lower index Ψ will be oftenomitted. We represent a normed state (42) by some bubble B.The state (42) is 
alled the 
orresponding to a bubble B if and only if for all j, k = 0, 1, . . . , N − 1and x, y ∈ A the following equations take pla
e
[xj ]B
[yk]B

=
xj,Ψ

yk,Ψ
.In this 
ase we write |Ψ〉 = |Ψ〉B. Applying the 
onventional rules for 
al
ulation of probabilities we
on
lude that if Ψ = ΨB, then for all j = 0, 1, . . . , N − 1, pj = |λj |2 that substan
iates the probabilityinterpretation of an amplitude squared module.The phase shift of the form Ψ −→ eiφΨ is represented by the list of rea
tions between the 
ollidinga.q. of the form44

βs −→ βs, α−s,
αs −→ αs, βs,

(43)where s ∈ {+,−}, and φ expresses the rea
tion rate and it dpends on a.q. density and their volume. Tomake φ independent from a.q. density we 
an vary the volume v(α) of ea
h a.q. α, so that v(α) = v0
αδt,where dt is the segment of time passed from the previous 
ollision of this a.q. with the a.q. 
orrespondingto the same parti
le; φ will thus be determined by the value of v0 only. We 
an allow for the valume thenegative values as well that 
an be stored with their sign in the 
omputer memory. We 
an allow alsothe negative signs for a value, that 
an be stored with its module in the 
omputer memory. Here theamplitude of amplitude quantum with negative volume is obtained as usual but is taken with the signminus (it is equivalent to that in (43) we take −s instead of s in the right side of rea
tions). In 
ase offree a.q. we then have to 
hoose v0

α for a quantum α su
h that this number is proportional to the element
δS of the a
tion for the quantum α, that is 
al
ulated a

ordingly to the formula (30). All the quantumevolution is thus simulated by the rea
tions of the form (43)45. The a.q. number in the rea
tions alwaysgrows that is 
ompensated by their de
reasing in the big distan
es be
ause we agree to eliminate ea
ha.q. whi
h has no 
ollisions with the others for a su�
iently large time.The di�erent approa
h is that we 
onsider a.q. as pointwise obje
ts and their 
ollisions happen whenthey o

ur in the same small segments of the 
on�guration spa
e simultaneously. If the size of thesesegments goes to zero and the total number of a.q. - to in�nity we obtain the wave fun
tion dynami
sdetermined by Shroedinger equation. If we solve it by the �nite di�eren
e method then the 
hange ofdivision points density a

ordingly to the rule ρ(x) = C |Ψ(x)|2 expresses the most e�
ient expense of
omputational resour
es for this method.We see that free a.q. not only redu
e the quantum probability to the 
lassi
al urn s
heme but alsoredu
e the 
ontrol over evolution for arbitrary 
omplex Hamiltonian to the varying of a.q. sizes (just a.q.sizes depend on the potential), whereas the rea
tions are always the same and have the form (43). Thedrawba
k of free a.q. method is that here we work with numbers dire
tly without even appli
ation ofnumeri
al notations that generally speaking leads to exponential 
ost in the 
omputational re
ourses in
omparizon with the bound a.q. method footnoteThe method of free a.q. 
ould be applied if the a

ura
yof the amplitudes is not important in 
omparizon with the determining of su
h basi
 states for whi
h itis not negligible, in other words when the state in ea
h time instant has the following form ∑

j∈J

λj |Ψj〉,where the total number of possible states J is limited indepemdently of a time instant.. The bounded44The type of the se
ond quantum in 
ollisions does not play any role and it is thus omitted. A 
ollision is happenedif the 
oordinates of the se
ond quantum belongs to some volume around the �rst quantum, for whi
h the rea
tions arewritten.45In order to make the model more symmetri
al and not to separate expli
itly the real and the imaginary parts ofamplitudes we 
an intordu
e these a.q. of the types α and β in the di�erent basi
es of the algebra of 
omplex numbers ofthe form eiφj , ei(φ+ π
2

) for φj = 2jπ/N, j = 0, 1, . . . , N − 1.36



a.q. thus represent the algebrai
 form of free a.q., and in what follows we use just the bound for as themost 
onvenient for the notations.Intera
tion between a parti
le and a harmoni
 os
illatorWe 
onsider as an example of a.q. approa
h the standard problem of a harmoni
 os
illator intera
tingwith a parti
le. This task is important be
ause it represent the model of intera
tion between 
hargedparti
le and ele
tromagneti
 �eld. Lagranjian of a system "parti
le+�eld" has the form (see ([FH℄):
L =

mx′2

2
− V (x, t) +

MX ′2

2
+ ω2X2 + g(x′, x, t)X(t), (44)where x and X are the 
oordinates of a parti
le and an os
illator, V is the potential energy of a parti
le.We apply the a.q approa
h to this problem. It requires the answer to the following question. How tomake agree the 
oordinates of parti
le and os
illator when a.q. 
ollide, if x and X are the 
oordinatesof the 
orresponding a.q., and we 
annot require their equality in the 
ollisions ? The simplest solutionis as follows. An amplitude quantum for the os
illator has a 
oordinate of the form X0 + X , where

X0 determins its relative spatial position only in the simulating spa
e and the moments of its 
ollisionswith the other a.q. and does not parti
ipate in the rea
tions and X is taken from the Lagranjian andit parti
ipates in the rea
tions, where |∆X0| ≫ |X | in ea
h time instant (the swing of pendulum isnegligible in 
omparizon with the shift of a.q.). Correspondingly, the step of modeling of a.q. of theparti
le Dt≫ δt mu
h ex
eeds the same step for the os
illator.We 
onsider the simulation in the framework of redu
ed Hilbert formalism.The transformation of amplitude part of j-th amplitude quantum α of os
illator in the moment t′ ofits 
ollision with a quantum of the same type is as follows:
λ′osc

j = λosc
j ·e i

h
δSosc

j , δSosc
j =

[

M(X(t′) −X(t0))

2(t′ − t0)
+ ω2X(t′)2 + g

(

xj(t
′) − xj(t1)

t′ − t1
, xj(t

′), t′
)

Xj(t
′)

]

dt,(45)where t0 is the moment of previous 
ollision of the quantum α with a quantum of the same type, xj isthe 
oordinate of the amplitude quantum β of the parti
le that is 
oupled with α, and t1 is the momentof the last 
ollision of β with a quantum of the same type.A transformation of the amplitude part of a.q. of the parti
le looks similarly.We now show how the simulation looks in the "
hemi
al" formalism. Here the rea
tions in the 
ollisionsof a.q. of the same type: parti
le-parti
le and os
illator-os
illator will be as above. But to introdu
e theintera
tion parti
le-os
illator we need the supposition about the shift of os
illator itself in the spa
e of
ordinates of a parti
le, e.g. the dynami
s of X0. This is the serious question with the physi
al sense andit arrises in the redu
ed formalism of Hilbert spa
es as well, be
ause the law of movement of a.q. beforethe 
oupling is un
lear. It shows that the problem reguires the additional 
onditions that tou
he themovement of os
illator. An os
illator 
annot be 
onsidered as we 
onsidered a parti
le in the potentialbe
ause it is a 
arrier of the �eld itself. This is the 
onventional approa
h in the �eld theory: an os
illatoris one mode of an ele
tormagneti
 �eld. We then must assume that a.q. of os
illator is emitted by 
hargedparti
les (see below). Let we are given the law of movement of os
illator a.q. in the spa
e of 
oordinates
X0. The intera
tion between a.q. of parti
le and os
illator takes pla
e in their 
ollisions only. If anamplitude quantum α of the os
illator 
ollides with a quantum β of the parti
le we 
an agree that therea
tion goes a

ordingly to the formula (45), and the rea
tion for the amplitude part of β has the sameform. Sin
e the summand of intera
tion g (xj(t

′)−xj(t1)
t′−t1

, xj(t
′), t′

)

Xj(t
′) o

urs twi
e we 
ould put 1/2before the 
oe�
ient - it 
an be in
luded to the existing 
oe�
ient g. It gives the algorithmi
 redu
tionof Hilbert formalism if we 
ompose the 
omplex amplitude quanta for many body problem along themethod des
ribed above. 37



If there are several os
illators and they do not intera
t then the transformations of the ampltude partsof a.q. have the similar form if we take into a

ount the di�erent frequen
es ω; the 
ase of intera
tingos
illators 
an be redu
ed to the 
ase of not intera
ting by the 
ange of the 
oordinate system (see ([FH℄)),or to write for the intera
ting os
illators the transformations analogous to (45).We note that to organize the 
ollisions between the a.q. of the parti
le and os
illator we need thespe
ial assumption about the movements of os
illator a.q., e.g., how X0 varies. Here we asume thata.q. moves 
haoti
ally, su
h that the 
hange of X0 guarantees the number of 
ollisions su�
ient for therea
hing of the required a

ura
y.Several 
harged bodies in the ele
tromagneti
 �eldWe assumed above that the bodies have the nonzero masses. This 
onsideration 
an be applied tothe 
ase of s
alar Coulomb �eld as well. But if we try to in
lude the separaet photons to the Lagranjianthen we would meet the 
ertain di�
ulties be
ause photons do not disperse the �eld but they 
arryit. It requires the radi
ally di�erent approa
h based on the mein law of ele
trodynami
s - the Maxwellequations. The a.q. approa
h must be su�
iently �exible that it 
an be extended to photons. In thisse
tion we tra
e this extension, using the 
onsidered problem of intera
tion between a parti
le and aharmoni
 os
illator. We 
onsider a system of 
harged parti
les with an ele
tromagneti
 �eld. The 
aseof many parti
les is obtained from the 
ase of one parti
le by the forming of the 
omplex a.q. for manyparti
les and permutations of equivalent parti
les as was shown above. The spe
i�
ity of 
onsiderationwith an ele
tromagneti
 �eld is thus revealed already in the 
ase of one parti
le + �eld. This 
aseis represented as a parti
le intera
ting with a system of harmoni
 os
illators whi
h represents a �eld.This passage needs one parti
ular agreement resulted from the Maxwell equations and whi
h we mustassume be
ause this is the agreement that the value of the ve
tor potential of a �eld is obtained by thesumming of the harmoni
 os
illator 
oordinates. Photons are quantum of an ele
tromagneti
 �eld, andwe must apply our 
ollision model to the photon a.q. that gives the 
lassi
al explanation of the quantumprobabilities. But we should 
onsider photon a.q. a

ounting the photons spe
i�
ity - as a system ofharmoni
 os
illators intera
ting with a parti
les, the more so as the expansion of a �eld to photons takespla
e in the impulse representation of the state spa
e but not in the 
oordinate representation. Followingour rules from the previous se
tion we asuume that the photon a.q. move so fast that the big numberof them have visited the vi
inity of a given �xed point in the time frame ∆t when an adrone shiftson one step su
h that we 
an sum these a.q. and expand the �eld to photons. We 
onsider a systemof 
harged parti
les with the density ρ in an ele
tri
 and magneti
 �elds with �eld strengths E and B
orrespondingly. We de�ne the density ve
tor of a 
harge e in a point R, t in its shift aAlong the 
urve q(t)as j(R, t) = eq′(t)δ3(R− q(t)), where δ3 is the three dimension delta-fun
tion. The main law of evolutionfor su
h a system is the system of three Maxwell equations and the equation of a 
harge 
onservation:
∇ E = 4πρ,
∇ B = 0′

∇× E = − 1
c

∂B
∂t ,

∇×B = − 1
c

(

∂E
∂t + 4πj

)

,

∇j = −∂ρ
∂t .

(46)Here the ve
tor and s
alar potentials of ele
tromagneti
 �eld 
an be obtained from the equation
E = −∇φ− 1

c

∂A

∂t
.
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We 
onsider the impulse representation of magnitudes parti
ipating in the Maxwell equations:
A(R, t) =

√
4πc

∫

āke
ikR d3k

(2π)3 ,

φ(R, t) =
∫

φk(t)eikR d3k
(2π)3 ,

j(R, t) =
∫

jk(t)eikR d3k
(2π)3 ,

ρ(R, t) =
∫

ρk(t)eikR d3k
(2π)3 .

(47)We 
an agree that (see ([AB, FH℄) āk = (a1,k, a2,k) is the expansion of ve
tor ak to two 
omponentsorthogonal to k; the 
orresponding dire
tions are 
alled the dire
tions of polarization. We assume thatthese dire
tions are 
hosen for ea
h ve
tor of impulse k arbitrary and �x this 
hoi
e.The a
tion for su
h a system is de�ned as S = Sparticles + Sfield + Sint, where:
Sparticles =

∫
∑

j

(

mq′2
j

2 +
∑

l

ejel

|qj−ql|

)

dt,

Sfield = 1
2

∫

(a′∗1,ka
′
1,k − k2c2a∗1,ka1,k + a′∗2,ka

′
2,k − k2c2a∗2,ka2,k)d3kdt

(2π)3 ,

Sint =
√

4π
∑

j

∫

(a1,kq
′
1,j + a2,kq

′
2,j)e

ikqj (t) d3kdt
(2π)3 ,

(48)where q1,j , q2,j are the proje
tions of the ve
tor q̄ to the dir
tions of polarization. The quantum evolu-tion of the 
onsidered system 
an be obtained by the formulas (26),(25), if we take the sum of a
tionsdetermined by (48) in pla
e of S.A state of our system is represented in the form of a bubble B, �lled by a.q. of two di�erent types:a.q. of a parti
le and a.q. of photons of ve
tor �eld46.We apply to su
h a system many parti
le approa
h des
ribed above, taking into a

ount that photons
arry the �eld 47.We asso
iate with ea
h ve
tor of impulse k two mutually orthogonal and orthogonal to k ve
tors ofpolarization pk,1 and pk,2. We des
ribe a.q. of photons of the ve
tor �eld, that have some pe
uliarity
one
led with the polarization. An amplitude quantum α of photon has the amplitude λα, the 
oordinate
X0,α, ve
tor of impulse kα, and the os
illator 
oordinates a1,α, a2,α, that are the 
omplex numbers48. Forthe modeling of the system evolution in the ele
tromagneti
 �eld we should at �rst pass to the impulserepresentation of a.q. that means, a

ordingly to our method, the multipli
ation of their amplitude partsto the phase multiplier e−ik̄x̄. We then 
an use the standard 
ollision model with only one 
orre
tionre�e
ting the feature of intera
tion between the �eld and the parti
les. We assume that the traje
toriesand impulses of the photon a.q. are not 
hanged in the 
ollisions with ea
h other. In other words theimpulse k does not parti
ipate in the pro
ess of 
hange of the photon amplitude (that 
orresponds to theexpression (48), and also with that the 
oordinate representation of a photon wave fun
tion has not su
ha sense as for the massive parti
les (see ([AB℄).46If we want to expand a s
alar �eld to photons as well, that 
orresponds to the derivation of photons from Maxwellequations (46) (see, for example, ([AB℄), then we must introdu
e the photons whi
h 
arry the s
alar �eld, as was explainedabove.47If we deal with the bound a.q. we must assume that they are redistributed as was pointed above: a quantum of ve
torphoton dissappearing at the periphery of a bubble is repla
ed by a quantum emitted by some of 
harged parti
les, whereits 
oordinate and impulse is 
hosen arbitrarily a

ording to the distribution determined by the wave fun
tion. In 
aseof free a.q. this me
hanism of photon a.q. reprodu
tion is supplemented with their birth in the 
ollisions with a.q. of aparti
le. The des
ribed s
heme makes possible to 
al
ulate approximately the real physi
al values 
hara
terizing a �eld. Forexample, the 
al
ulation of the ve
tor potential A in the point R in a time instant t 
an be done by the following formula

A(R, t) =
√

4πc
∑

τ∈[t,t+δt], α(τ)∈CR

X̄α(τ)a
ikα(τ)R ,whi
h is the translation of (47) to the a.q. language.48Instead of these 
oordinates that are 
onne
ted with the 
hosen dire
tion of polarization we 
ould use the ve
tor ofpolarization orthogonal to the photon impulse. 39



As earlier, we at �rst 
onsider our problem in the redu
ed Hilbert formalism. Let a photon amplitudequantum α be 
oupled with a parti
le amplitude quantum β with impulse j = kα. The transformationof the amplitude part of α in a 
ollision with other photon a.q. has the form
λ′α = λα · e i

h
δ(S1,α+S2,α),

δS1,α = 1
2

[

∣

∣

∣

a1,α(t′)−a1,α(t0)
(t′−t0)

∣

∣

∣

2

+
∣

∣

∣

a2,α(t′)−a2,α(t0)
(t′−t0)

∣

∣

∣

2

− k2
αc

2(|a1,α|2 + |a2,α|2)
]

(t′ − t0),

S2,α =
√

4π
(2π)3 sign(eβ)

(

a1,α
x1,β(t′)−x1,β(t1)

t′−t1
+ a2,α

x2,β(t′)−x2,β(t1)
t′−t1

)

eij·xβ (t′ − t0),where x1,β , x2,β are the 
omponents of ve
tor xβ along pk,1 and pk,2; where if α is 
oupled in a list withthe others a.q. the 
orresponding summands must be added to the element of a
tion. We now 
onsiderthe transformation of amplitude parts of a parti
le quantum β in its 
ollision with a.q. of the same type.For example, let it be 
oupled in the list with α and with a.q. γ of the other parti
le. The amplitudepart then transformes as:
λ′β = λβ · e i

h
δ(S3,α+S2,α),

δS3,α =
msign(eβ)(xβ(t′)−xβ(t1))2

2 +
eβeγ

|xβ(t′)−xγ(t′)| ) dt,If a quantum β is 
oupled in the list with the others a.q. of parti
les, then the 
orresponding summandmust be added to the element of a
tion.To pass to the "
hemi
al" formalism we must do the 
hanges in the proposed s
heme as in the 
aseof a parti
le and os
illator.Appendix 2.About the simulation of Lorentz invarian
eThe starting point of relativity is Lorentz invarian
e of the laws of Nature, e.g., the 
onservation ofpseudo-Eu
lidean metri
 of the spa
e-time in the passages from one inertial frame to the other. Here bythe "laws of Nature" we mean the events that happen on some segment of a pointwise parti
le traje
toryin the spa
e-time with 
oordinates x, y, z, t. If we express su
h laws by di�erential equations, we assumethat this segment is very small 
omparatively with the length of a traje
tory, and its 
oordinates are
dx, dy, dz, dt. Pseudo-Eu
lidean metri
 is determined as ds2 = dx2 + dy2 + dz2 − dt2 (we 
hoose thesystem of units so that the speed of light equals 1. Lorentz invarian
e then means that if we denote byprimed variables the values of the 
orresponding magnitudes in the other inertial frame, then the followingequality is true: ds2 = ds′2. In order to 
onsider how this fa
t 
an be represented in the algorithmi
approa
h it is required to de�ne the 
omputational network whi
h plays the role of inertial frame. It isdone in the next se
tion.3.1 Multihead Turing ma
hinesWe assume the formalization of algorithms in the form of multihead Turing ma
hines49.We pre
eed with the de�nition of multihead Turing ma
hines. Su
h a ma
hine 
onsists of threeobje
ts: a set of tapes divided into 
ells, a set of heads and a set of rules for heads shifts whi
h have theform:

aj1 , aj2 , . . . , ajl
; qk1 , qk2 , . . . , qkl

−→ aj′
1
, aj′

2
, . . . , aj′

l
; qk′

1
, qk′

2
, . . . , qk′

l
; Sr1 , Sr2 , . . . , Srl49Markov normal algoritms response to our idea as well. Cellular automata are not appropriate be
ause it do not allowto simulate quantum non-lo
ality. 40



where ajt
, qkt

denote the 
ontents of 
ell observed by t-th head and the state of this head before theappli
ation of the rule, the primed symbols denote these values after the appli
ation of the rule, and Srtdenotes the shift whi
h has to be done aver this head, it takes a value from: shift to right, shift to left,no shift. We 
an laun
h several Turing ma
hines on the same set of tapes and make the rules for themdependent not only of 
ells 
ontents and heads 
onditions, but of what heads of what other ma
hinesobserve these 
ells. So 
ompli
ated rules have the following form:
aj1 , aj2 , . . . , ajl

; qk1 , qk2 , . . . , qkl
; x̄h1 , x̄h2 , . . . , x̄hl

−→ aj′1
, aj′2

, . . . , aj′
l
; qk′

1
, qk′

2
, . . . , qk′

l
; Sr1 , Sr2 , . . . , Srlwhere x̄ht

is a list 
onsists of the pairs of the form: (a head number, the 
orresponding ma
hine number)for all heads observing the 
ell whi
h is observed by t-th head of the 
onsidered ma
hine. The di�erentma
hines will thus intera
t. We 
an assume that ea
h many parti
le amplitude quantum 
orresponds toexa
tly one Turing ma
hine whi
h number of heads equals to the number of entangled parti
les. Thenumber of heads does not in�uen
e to our 
on
lusions but we 
an assume that ea
h ma
hine has twoheads only that 
orresponds to the hierarhi
al model for many parti
les systems. All the ma
hines willthus have the same rules that are de�ned by the intera
tions between the parti
les. It is easy to des
ribethe quantum non-lo
ality in terms of multihead Turing ma
hines be
ause it is 
ontained in the rulesof ma
hines. For example, for a pair of entangled photons ea
h head points to the spatial lo
ation oftheir amplitude quanta that form a pair. When the lo
al 
onditions lead to the elimination of one ofsu
h quanta, we do not need the spe
ial "kill signal" speading from this quantum to its 
ounterpart;the elimination of the both quanta is guaranteed by the appli
ation of rule. The realization of rules formultihead Turing ma
hines is the job of the administrative segment.Multihead Turing ma
hines give the single treatment of a simultaneity of events in quantum physi
sthat results from the entanglement of the parti
les. Su
h a simultaneity 
onsists in the appli
ation of arule to a set of spatially distant heads. Perhaps there are no other simple way to introdu
e a simultaneityin quantum formalizm.3.2 Why quadrati
 number of steps is required for simulationEvery inertial frame 
an be represented as a set of multihead Turing ma
hines. Its 
ommon memory isthus a model of spa
e in this frame. This frame is used as a gage rod for the measuring of the dynami
s ofobje
ts that lie beyond this frame, for example, parti
les moving relatively to it. This gage rod physi
allyis the solid obje
t 
onsisting of atoms with �xed positions. Given two su
h frames whi
h move relativelyto ea
h other with the 
onstant speed, the 
onservation of pseudo-Eu
lidean metri
 means the rule ofagreement between two frames in the des
ription of the same pro
ess in the both frames. Su
h rules musta

ount the algorithmi
 des
ription of a dynami
s in the both systems, in parti
ular the limitation onthe maximal permissible speed of parti
les in the user segment; the 
lassi
al law of adding of speeds isthus not appli
able here. The rule of agreement must not be 
lassi
al. We show one argument for thatthis rule must give the 
onservation of pseudo-Eu
lidean metri
.It was mentioned above that the formal notion of simultaneity for Turing ma
hines is not physi
allyadequate. A simultaneity takes pla
e for the 
ells observed by heads only in the moment of appli
ation ofsome rule. For the time re
koning in a given inertial frame some standard physi
al pro
ess 
an be used,for example, the �ight of photon through the 
hain of atoms disposed along the 
onsidered traje
tory.Sin
e it is des
ribed by means of quantum physi
s, for example, by amplitude quanta, in the modelling oftime frame dt we must 
onsider all pairs of points on the traje
tory (and even in some vi
inity of it whi
hthi
kness is �xed and independent of its length). Ea
h of su
h pairs 
orresponds to starting and �nalpoints of some amplitude quantum used for the re-
ount of the wave fun
tion in the next time instant50.50It does not 
ontradi
t to that the speed of all photons is the same. The speed of photons arises after the interferen
eof all amplitude quanta only. Here some of them 
an intera
t with atoms as was des
ribed in the Apendix 1.41



For the simulation of internal pro
esses in our frame in the time dt we must use all states of two headTuring ma
hine a
ting on the tape of size dt, e.g., of the order dt2 elementary operations.We now 
onsider the pro
ess of the observation the events that happen with parti
les whi
h are not
ontained in this gage rod. In this pro
ess the pairs of heads will arise whi
h are lo
ated a distan
e ofthe order of dS =
√

dx2 + dy2 + dz2 one from another. For example, if su
h an atom whi
h is disposedoutside our gage rod emits a photon, the di�erent photom a.q. are emitted when this atom o

upies thedi�erent positions relatively to our gage rod. Here all external parti
les for our gage rod are representedby the same 
ells on the tapes as the internal parts of the gage rod itself. For the simulation of allpro
esses: external and internal it is required the total number of elementary operations of the order
dS2. Here the 
oe�
ient does not depend on dt and is determined by the starting and �nal moment ofthe simulation, but not by the internal time of this frame. If we want to know how many 
omputationalsteps we have for the simulation of the external pra
esses we must subtra
t the number of operationsrequired for the simulation of internal pro
esses from the total number of operations. We su
h obtainthe value of the form c1dS

2 − c2dt
2. We then 
an imagine that this number of steps required for thesimulation of external (e.g., measured) system is the measure of the 
omplexity of its des
ription in thisframe. And the equivalen
e of inertial frames then means that this measure of 
omplexity must be thesame for all inertial frames, that gives the 
onservation of pseudo-Eu
lidean metri
 in passages from oneframe to the other. The quadrati
 dependen
e of the quantity of steps in algorithm from the physi
alvalues of the length and the time thus results from the method of the 
al
ulation of wave fun
tion throughFeynman pass integrals if we apply for this 
al
ulation the dis
retization by amplitude quanta.This des
ription is not rigorous, let alone to pretend to be the single possible. We have represented itin order to show that the algorithmi
 approa
h does not 
ontradi
t to Lorentz invarian
e of the physi
allaws.
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